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Abstract—This paper presents the design and implementation 

of a remote monitoring system for residential rainwater harvesting 
tanks, aimed at improving water management for home 
gardeners. The system utilizes an ESP32 microcontroller and an 
ultrasonic sensor to measure water levels in the tanks. This data is 
transmitted to AWS cloud services via MQTT, using AWS IoT 
Core, DynamoDB, and Lambda functions for real-time 
monitoring and data processing. The system also includes an EC2 
hosted web application that allows users to view tank levels 
remotely and receive notifications when the water levels reach 
predefined thresholds. 

The project addresses the challenges of water tank monitoring 
by automating the data collection process and providing 
notifications, reducing the need for manual checks. It is designed 
to be low-power, affordable, and easily replicable, leveraging 
widely accessible hardware and AWS’s free-tier services. 
Additionally, the system is adaptable for future enhancements, 
including the integration of machine learning models to predict 
harvesting times and consumption patterns, further optimizing 
rainwater use. The design also considers outdoor durability, 
suggesting 3D printing for custom enclosures and the potential use 
of mechanical sensors for increased longevity. 

This work not only provides an efficient solution for home 
gardeners but also lays the foundation for a scalable platform that 
could be expanded to meet broader agricultural needs. By 
combining IoT, cloud computing, and low-cost hardware, the 
project demonstrates the potential of smart technologies in 
sustainable water management. 
 

Index Terms— Amazon Web Services (AWS), Automated 
Reports, ESP32, Internet of Things (IoT), Smart Home, Rainwater 
Harvesting, Water Tank. 
 

I. INTRODUCTION 
RACTICING environmentally friendly activities in ones day 
to day life is becoming more popular as global warming 

warnings rise. It is important to reduce, reuse, and recycle in 
order to limit our individual negative footprints and impact on 
the environment. One popular method to conserve water for 
gardeners who live in rainy climates is to collect rain water to 
use later when watering their plants. However, many gardeners 
struggle with monitoring the water levels in their rain collection 
tanks. This project aims to create a system that allows green 
thumb gardeners to focus their energy on other green initiatives 
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and stay dry rather than having to manually check the state of 
their water drums. The reason why I chose this project is 
because I have relatives close to me who have faced issues with 
monitoring their rainwater tanks and losing out on free 
resources because they didn’t want to bear the cold or merely 
forgot about them.  

Living in Washington state, while it may feel gloomy and 
saddening, we are lucky to receive 66 inches of annual average 
rainfall in western Washington and an average of 156 days of 
rain annually. The average water consumption of a single-
family home in Seattle, WA is 52 gallons [1], and according to 
the EPA, 30% of residential water use is used outdoors [2]: 
equating to the average single-family home in Seattle, WA 
using 15 gallons of water a day on their yards (lawn and 
gardens). Collecting rainwater for reuse is not only beneficial 
to the environment, but also benefits the homeowners 
economically. The average cost of a gallon of water in Seattle, 
WA is three cents [3], while this may seem like a nominal 
amount, with the average water consumption of a garden, it 
comes out to $11.79 a month.      

While the rain collector can see direct economic gains from 
collecting rainwater, there are even more environmentally 
friendly reasons to do so. Rainwater is better for the plants being 
gardened. The water is 100% soft, meaning it is not chlorinated 
and is higher in nitrogen and has a more elevated pH compared 
to tap water [5]. Additionally, by collecting rainwater, less 
water is going to rain runoffs [4] which helps save pipes and 
avoids corrosion and solves drainage problems on the property. 
Lastly, rainwater can be used in emergencies for indoor use 
when properly treated [6].  

In order to maximize their efforts to help the environment 
and to minimize public utilities water bills, many households 
have multiple water tanks. The issue with multiple tanks is 
managing when to fill which tank as they fill up, many homes 
have one singular tank collecting run off at a time and shuffle 
them around as they fill up. Another issue that is present for all 
water tank users is being able to monitor their consumption 
during the gardening season. This makes creating a monitoring 
system accompanied by a notification service an appropriate 
step in adding the yard into a smart home household, for a tech 
forward and simplified lifestyle.   

By creating a system to help gardeners manage their water 
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collection system, a single household can save and repurpose 
tens if not hundreds of gallons of water a year. The system will 
be implemented using an ultrasonic sensor which will monitor 
the level of the water in the drums. The water level collected 
will then be viewable for immediate monitoring and will also 
trigger notifications to the users if the tanks are nearing full or 
empty. The system will use Amazon Web Services (AWS) to 
store and process the data in the cloud.  

With the increased availability and accessibility of 
microcontrollers and peripherals and cloud computing services 
offering free services with improved documentation. This 
system can easily be replicated by determined gardeners to 
create a smart yard. The goal of the project is to create a system 
that can be easily replicated.  

The contributions made to this project include the hardware 
setup and creation of the programs to be included in both the 
device-level and cloud-level sections of the system, in addition 
to the configuration of a server. The development of the 
programs required research for not only the devices and cloud 
service documentation: but also, tutorials that instruct on how 
to integrate the different hardware and software systems 
together, as well as tutoring on the hardware and development 
of a data pipeline in the cloud.   

 

II. RELATED WORK 
While there are commercial water level monitoring systems 

available to purchase, they vary in scale and methodology. 
Many of these systems focus on systems that are similar in size 
for smaller tanks, but more importantly, singular device 
systems. Other papers focus on the benefits of rainwater 
harvesting.  

In a paper by Abdullah et al. a water level monitoring system 
is explored using a PIC microcontroller 18F452, alarms, and 
LCD screens [7]. The system is able to monitor the water level 
in a tank and notify users via an alarm and LCD screen of the 
current water level. While the user goals and hardware are 
similar, this paper focuses on a local development of the 
system, the water levels are not able to be monitored remotely. 

A study completed by Das et al. again uses a microcontroller 
to monitor the water levels of a tank and process the data on-
board to pump water into the tank as water levels drop [8]. The 
system is fully autonomous, again however, is at a local 
development scale. The system does not have a singular goal 
they are trying to solve but is able to be reused for specialized 
uses.  

Another study by Ismail, Azizi, and Zariman studies the 
validity of an internet of things (IoT) system that tracks the 
water levels of damns/rivers and allows damn technicians to 
open and close the damn gates from their personal devices [9]. 
It was found that the hardware system itself could lead to safer 
working conditions and allows more visibility of the damn 
status for residents along the river that could be impacted.  

While there are contributions to previous studies on the 
validity and benefits of water level monitoring systems, none 
aim to solve the same problem, nor do they use the same 
hardware and software combination. In a study by Baballe a 

similar system is built, however a wire water level sensor is 
used [10], while the system works, for larger scale systems and 
water drums, it can be costly and technically expensive to 
maintain such a sensor.  

Work completed by Campisano et al. explores the benefits 
and downfalls of urban rainwater harvesting systems. It is found 
that while pure rainwater is not the safe for human consumption 
unpurified, with treatment, becomes potable. It was also found 
that at scale that rainwater harvesting is not financially viable, 
but with smaller raw water extraction that is strictly outdoors 
(do not need treatment and plumbing), the return on investment 
is positive.  

The main contributions of the project to the problem are to 
provide an automated water level monitoring system for 
outdoor residential use. This is achieved by using readily 
available and affordable resources, while still achieving the 
goal of creating a system that maintains accurate report of 
current water levels and triggers notifications to users of 
discrepancies. The impact of this approach is that an ultrasonic 
sensor is used to determine the water level as opposed to 
mechanical approaches or wire water monitors, this allows for 
better precision and less room for hardware failure. Another 
impact of this approach is the use of cloud services computing 
rather than on-board computing, in addition to multiple tanks 
being monitored in contrast to a singular device. This allows for 
precise remote monitoring of many water tanks, giving home 
gardeners accurate results within the comfort of inside their 
home or on the go.  

 

III. SYSTEM MODEL, PROBLEM STATEMENT, & ANALYSIS 

A. System Model  
The key modules of the system can be broken down into two 

major groups: the physical hardware devices, and the cloud 
resources and applications. Within the physical hardware 
devices lie the ESP32 microcontroller and ultrasonic sensor. 
The cloud resources include AWS IoT Core, AWS Lambda 
Function, Amazon DynamoDB, Amazon Application 
Programming Interface (API) Gateway, and Amazon Elastic 
Compute Cloud (EC2). Figure 1 shows the relationship between 
each module within the system.  

 

 
Figure 1: System Diagram of Hardware and Cloud Resources 
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The ESP32 is a microcontroller released in 2015 by Espressif 
Systems with Wi-Fi and Bluetooth capabilities built-in while 
still maintaining affordability and security at just $5 a unit [11].  
As seen in Figure 2, the ESP32 is compact and supports the use 
of many types and quantities of peripherals. Maier, Sharp, and 
Vagapov showcase that the ESP32 is capable of excellent 
performance and is great for real time applications (like IoT) 
[12]. The ESP32 was chosen for this project due to its small 
package, Wi-Fi capabilities, affordability, and the ample 
support and documentation for developers along with simple 
integration use with AWS. The integrated development 
environment chosen to implement on the ESP32 was the 
Arduino IDE, as it includes libraries and support for the ESP32 
devices as well as its simplicity, it was chosen over PlatformIO 
via VSCode because of its native integration. On the ESP32, the 
Arduino library and other open-source libraries will be used, 
including the ArduinoJSON, PubSubClient, WiFiClientSecure, 
Wifi, and Wire libraries.    

 

 
Figure 2: Image of the ESP32 Microcontroller 

 
 

For the sensor collecting data within the system, an ultrasonic 
sensor was used. An image can be seen in Figure 3 below. The 
ultrasonic sensor emits high-frequency sound waves (ultrasonic 
waves, they are above the human hearing range) towards the 
surface of the water where the waves bounce off and return to 
the sensor, using the time amount for the waves return (speed 
of sound), the distance from the sensor to the water surface can 
be calculated [13]. This sensor was used due to its affordability, 
ease of access, and distance accuracy. The main input variable 
for this project system is the distance of the water surface from 
the sensor (mounted at the top of the water tanks), the output 
will be notifying the user of predefined alert levels, as well as a 
web app for on-the-fly monitoring. 

  
 

 
Figure 3: Image of an Ultrasonic Sensor 

 
 

AWS acts as the main hub for the system, facilitating the 
MQTT communication from the devices and the cloud, as well 
as data and application storage, and serving as an endpoint for 
data retrieval.  It offers a user interface (UI) that is easy to use 
while still allowing for complex functionality and processing of 
the collected data. AWS IoT core acts as the main entry point 
of the collected data into the cloud service. The distance data 
from each of the devices is published to AWS IoT Core via 
MQTT where it is then redirected to AWS DynamoDB via a 
message SQL rule. AWS DynamoDB is where the data is 
housed within the cloud, it was chosen because of the scale of 
the project and the simplicity of the data being inputted, the 
NoSQL database service that supports key-value storage and 
retrieval [14]. An AWS Lambda function is used to support an 
AWS API Gateway. The lambda function retrieves the distance 
of the water surface within a certain water tank given the water 
tank device identification number from the DynamoDB table. 
The AWS API Gateway GET call uses this lambda function to 
allow external and simple retrieval of the data, returning the 
values within a JSON message. An AWS EC2 server is used to 
host and run the web apps that connect the user to the data. A 
python script on the server is ran every 30 minutes via a cron 
job, this application notifies the user via email if each individual 
tank is near empty or full (by 20%). Also hosted on the same 
EC2 server is a flask web application that gives the user remote 
monitoring of the water tanks levels, allowing them to track the 
water level for all the tanks in one location, no matter how full 
the tanks are. Using this collection of AWS services allows for 
the entire system to remain within the free tier provided by 
AWS, making the cost burden of the system only the upfront 
hardware costs.  

 

B. Problem Statement & Analysis 
The problem that is being addressed in this project is the 

difficulty to monitor the water levels of residential gardeners’ 
rainwater harvesting tanks, as it is a burden to do so during the 
rainy season in the pacific northwest (PNW) with multiple 
water tanks. Many factors make monitoring the water tanks a 
hassle, mainily the inability to predict when the tanks near full 
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during collection season, in addition to needing to switch 
which tank is currently connected to the roof water drainage 
system. Many residential gardeners have multiple water tanks, 
but only a few have a sophisticated system that are able to 
continuously automatically fill all of the tanks within the 
system, this creates an issue of needing to rearrange the tanks 
or change the tank currently hooked up to the roof water 
draining system. However, depending on the rain fall, a tank 
can fill up anywhere between within a day or up to a month, 
making predicting when to change the hookup very difficult. 
Another barrier is the poor environment often the process must 
occur in, going outside in the wet and cold is less than ideal 
and leads to long periods where rainwater collection can be 
wasted. The project’s main purpose is to aid the home 
gardener by removing the necessity of having to predict the 
water levels in the tanks and keep the gardener in the more 
favorable warm and dry indoors. In doing so, the gardener will 
be less deterred by the processes of home gardening and will 
yield a higher return on interest (ROI). By implementing this 
system, efficient monitoring and usage of rainwater can save 
household tens of gallons of water usage annually. This 
contributes to both environmental conservation and reduced 
utility bills, encouraging sustainable practices among 
gardeners.  
 The assumptions in place for this project are that the 
developers trying to implement this project has access to the 
aforementioned physical devices. The implementations on the 
cloud resources for this project can be done within the Free 
Tier of AWS cloud services. In addition, it is assumed that this 
project is to be used by residential rainwater harvesters within 
a small scale that do not intend on purifying the water they 
collect. Larger scale (commercial) projects require more 
infrastructure that will push the data being transferred and 
stored in the cloud to push cloud resource consumption over 
what is allowed within the AWS Free Tier. Additionally, 
water purification is costly and complicated, which would lead 
the financial burden of the system to equate to a negative ROI. 
But as this system is intended for home use, purification and 
large-scale projects will not be considered.  

 

IV. DESIGN AND IMPLEMENTATION  
There are subgroups within the project system that require 

different techniques and tools in order to implement the 
system to satisfactory.  

A. Physical Devices 
The physical devices involved in this system are the ESP32, 

ultrasonic sensor, and external power supply (portable power 
bank). Both the ultrasonic sensor and the power supply are 
connected to the ESP32, the ultrasonic sensor is connected to 
the general-purpose input/output (GPIO) pins using female-to-
female jumper wires and the power supply is connected directly 
to the microcontroller via USB-C. During the implementation 
for this project, it was found that the voltage common collector 
(VCC) pin on the ultrasonic sensor had to be connected to the 
5v output on the ESP32 opposed to the 3.3v output to properly 
power the device. The pins used for this implementation were 
P12 (echo) and P13 (trigger).  

With regards to the system, since it is an electrical circuit, it 
is susceptible to water damage, and as the system resides within 
a water tank, it is at high risk to damage. While a custom 
designed 3D printed enclosure would be ideal, any plastic 
enclosure sealed with duct tape is used within the 
implementation of the project. It is also important to note that 
the ultrasonic sensor must be oriented in the correct direction to 
accurately measure the distance of the water surface within the 
tank. The sensor should be aimed directly down towards the 
floor of the drum. Additionally, the project was implemented 
with 33.5-inch (internal) height water drums, this is within the 
sensors reading distance, large tanks with a height over 60-
inches would not be able to calculate the distance to the bottom 
of the drums.  

The voltage for the sensor as previously mentioned is five 
volts, this makes for a low-voltage option. While most 
ultrasonic sensors are 5v, some can draw as little power as 3.3v 
and would allow for the power supply life to be extended. The 
power supply has not been pushed to full drainage, currently the 
expected battery life is unknown. This is likely due to the small 
power draw of the microcontroller and its peripheral, running 
in deep sleep when not transmitting data.   

 

Figure 4: An image of the Physical System, including: microcontroller, 
ultrasonic sensor, and external power supply. 

 
The physical device will have a program for implementing 

the functionality of the microcontroller, as well as connecting 
to Wi-Fi and authentication information needed to access the 
cloud services. The initial setup method in the code base on the 
physical devices connects the devices to Wi-Fi, then creates a 
connection to AWS, and lastly sets the pins to the appropriate 
modes (input and output). The continuously running code base 
is compiled and uploaded to the devices (ESP32) via the 
Arduino IDE. The distance measurements are taken every 20 
seconds, this is to allow for accurate readings during heavy 
rainstorms which can lead to fast rising water tanks levels. 
When taking the distance measurements, the distance is 
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calculated via the time it takes for the ultrasonic waves to return 
to the sensor, requiring on board mathematical calculations. 
Once the distance is calculated, the data must be converted into 
a JSON message format in order to be sent to AWS IoT core 
via MQTT protocol. This will be done using the open-source 
ArduinoJSON and PubSubClient library.  

When uploading this program to the ESP32, it is possible to 
run into many issues and/or failure messages. The main one 
being timeout issues. This is because the Wi-Fi connection 
handler, AWS connection handler, and main program, all run 
within a while-loop, if incorrect credentials are passed it can 
cause timeout issues.  

B. Cloud Resources  
In the AWS IoT Core, the three ESP32s are setup as new 

Things (can be done individually or as a family), this is where 
all MQTT certificates and keys are created. These certificates 
and keys need to be saved and kept within the secrets file of the 
code base onboard the physical devices to be used when 
connecting the ESP32s to the cloud resource. For the Thing 
policy of each of the ESP32s, a policy must be attached to each 
of their certificates, the policy should allow the device to 
connect, publish, and subscribe to IoT Core. Each device has its 
own topic it publishes to: “water1/pub”, “water2/pub”, 
“water3/pub”.  

In AWS DynamoDB a table must be created to store the data 
and easily lookup the data given the key. From IoT Core, a 
message routing rule must be made for each channel to repost 
the data that is sent into IoT Core to the DynamoDB table. Each 
device will post to its own topic on IoT Core, each rule will 
redirect all posts from its topic to its corresponding row in 
DynamoDB (given by the device identification number). The 
key for the table is the device_id (number: 1-3) and the current 
distance will be continuously updating (past values will not be 
stored).  

An AWS Lambda function will support the AWS API 
Gateway REST API. The python script embedded in the lambda 
function queries the DynamoDB table, retrieving the most 
recent distance value for the given device. The API Gateway 
passes a device_id number to the lambda function, where the 
function then retrievers the most recent distance value from the 
DynamoDB table, from there the lambda function passes the 
value back to the API Gateway where it is packaged into a 
JSON message for the response to the GET call. The REST API 
can be used from anywhere, in and out of AWS.  

To support the user accessed applications, an AWS EC2 VM 
server hosts two applications. The first application sends the 
user email notifications every 30 minutes if the water level is 
within a warning zone. This is accomplished using a cron job 
that executes a python script that checks the current water level 
of each water tank, and for each tank, if it is within a full or 
empty warning zone, sends an email to the user.  

The second application that is hosted on the EC2 server that 
is presented to the user is a web application. The web app serves 
as a way for the user to use the system year-round. By allowing 
for the user to see the current water levels year-round, they are 
able to predict how long the harvested water will last them and 

when all tanks are full to disconnect the system to avoid 
flooding. The web app is hosted on the EC2 server, viewable 
form any device with a minimal but clean design, and up to date 
with helpful icons to indicate when tanks are near full or empty.  

C. Connecting the Cloud Resources to the Physical Devices 
The certification files and private keys from the previous 

section should be stored where accessible from the device-level 
program. In this implementation, a secrets.h header file was 
created to hold all the keys and other private information 
including the Wi-Fi SSID and passwords. 

To connect the device to the cloud, the device-level program 
must contain steps to enable connecting to AWS IoT Core, 
publishing messages, collecting, and processing distance data. 
In the step to connect to AWS IoT Core, first the program must 
connect to the internet using the Arduino Wi-Fi library and 
SSID information in the secrets.h header file. Next, the client is 
to connect to the AWS IoT Core endpoint using PubSubClient 
library. This step involves the use of the certification files and 
keys. Once completed, the client will be connected to its 
individual Thing (ex. Esp32-water) and be subscribed to its 
owned topic (ex. “Water2/pub”).  

In the code to publish a message, a JSON document must be 
created so that it can be used to transfer the data using the 
MQTT protocol. The JSON document will include the sensor 
device identification number and the computed distance value 
for the water surface from the ultrasonic sensor. This is then 
published use the PubSubClient to the water(1/2/3)/pub topic.  

The MQTT topics used in this system are water1/pub, 
water2/pub, and water3/pub. The raw data collected by the 
ultrasonic sensors is sent to the devices assigned topic. Since 
the AWS IoT console allows users to modify the message 
routing and publish their own messages to topics, users are able 
to modify the notifications that are sent (or lack of) via email. 
The device, topic, database pipeline architecture that the 
applications retrieve that data from can be seen in figure 5.  

 

 
Figure 5: Physical Device to AWS IoT Topic Publishing Route  

 

V. EVALUATION 
In order to evaluate the accuracy and efficiency of the 

system, an experiment was conducted. Additionally, with the 
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rising concerns to IoT security, some research was completed. 
To assess the accuracy and efficient of the system, manual 
measurements of water level distances were taken. To review 
the security of the system, more research was completed on the 
security of ESP32s and the possibility and ease of penetration 
to the system and its data.  

In order to evaluate the accuracy of the system, an 
experiment was pursued to capture the distance readings and 
accuracy in comparison to manual measurements. To do so, the 
readings of the water tank were taken with the device and 
compared to a manual reading. Manual readings were taken via 
a ping pong ball attached to a string and dropped into the tank, 
measuring the full length of the ball and string with no slack 
(the ball floats on the water surface). The mean value for the 
difference in measurements was .5cm (devices measure at 
whole unit increments). The discrepancy could be a result in 
human error during manual measurement, or errors in the 
sensor. What could cause errors in the sensor are: miss 
calculations, ultrasonic waves bouncing off other surfaces, etc. 

Next, to evaluate efficiency in the system, ensuring the 
system was able to continually measure water levels as they 
rose needed to be tested. To align with the goals of the system, 
a 5-gallon bucket was used instead of the 55-gallon water tanks 
the device normally monitors. The device was placed at the top 
of the bucket and the code was modified to post to IoT Core 
every second. The bucket was slowly filled up with water via a 
garden hose. Results found that as the water flowed into the 
bucket, the distance value from the device continued to 
decrease. This shows that the system was able to accurately and 
continuously calculate and post the distance data.  

Lastly, an experiment was created to check the devices 
robustness via its ability to reestablish an internet and AWS 
connection. With the device functioning as intended, it was 
brought away from the Wi-Fi router to cause the internet and 
therefor AWS connection to be lost, it was then returned to its 
original position. This experiment was to mimic conditions if 
electricity were to go out, internet outage, and to measure how 
far the system could reach away from the home. It was found 
that the device was able to reconnect to the cloud services 80% 
of the time (8/10). The failures happened due to the device 
booting into sleep mode before it was able to reconnect. 

These tests prove that the system is accurate, efficient, and 
robust. While the sensor was not able to complete exactly 
accurate distance reads with and was therefore rounded for 
simpler handling, given the needs of the users, it is far more 
than accurate to complete the tasks at hand. And by using the 
sensor over manual efforts to monitor, time and energy is saved. 
The system is efficient and reliable, the system was able to 
accurately monitor the water levels at they rose, ensuring the 
users that the system can be trusted to given accurate results in 
real-time. Lastly, the system is robust in being able to reconnect 
itself without the need of user intervention. Allowing for a 
hands-off system that can withstand outside forces. 

However, the ESP32 is at risk to security threats. A study 
done by Barybin et al. found that even unexperienced hackers 
can easily penetrate the systems hosted on ESP32s and send 
fake data over the to their corresponding web interfaces [17]. 

While this poses as a threat to loss of user data, this system does 
not host data or operate outside of the system that poses any real 
risk to users. Modifying of data, while can lead to users being 
misled on their current rainwater tanks levels, pose no 
information or physical threat. However, if personal data were 
to be stored on board within the code base of the device, private 
data leakage could become a larger issue.   

 

VI. CONCLUSION  
The purpose of this project was to create a system to aid the 

home gardener with monitoring their rainwater harvested 
collection tanks by creating a remote access monitoring 
application in addition to pre-defined triggered notifications. 
By integrating the ESP32 microcontroller, ultrasonic sensor, 
and AWS cloud services, the system automates real-time 
monitoring and notifications, removing the need for manual 
checks and enhancing the convenience of residential rainwater 
management.     

The use of AWS IoT Core, DynamoDB, Lambda Function, 
API Gateway and an EC2 hosted web application ensures 
seamless data collection, processing and user accessibility. The 
system’s low power consumption, accessible hardware, and 
adherence to AWS Free Tier makes it an affordable option for 
home gardeners. The equipment used for the project was 
affordable and easily accessible for any persons for this project 
to be replicated.  

The project not only address the immediate challenges of 
water tank monitoring but also lays the groundwork for a 
scalable and adaptable platform that could a broader audience 
with additional features (outlined in the next section). It serves 
as a valuable step towards leveraging IoT and cloud 
technologies for a smarter yard.   
 

VII. FUTURE WORK 
The implementation of this project included measuring and 

calculating the distance / level of the water tanks and notifying 
the users when the tanks are near empty or full. In future 
iterations many modifications and improvements can be made 
to create a more complex and robust system that can serve more 
of the user’s needs. The system can be better developed to 
withstand the wet and outdoor environment. In addition, 
collecting outdoor data and implementing a machine learning 
(ML) model can help gardeners predict harvesting times and 
consumption use.  

The physical device sits at the top of the tank peeping through 
one of the water pass holes, it is currently protected via another 
plastic tub on top of it. Over time, this tub can be removed by 
wind or other circumstances, additionally, water can seep in or 
rise out of the tank and compromise the device. The first 
addition to the project to help protect the device is design and 
creating a secure housing case for the device to better protect it 
from the outdoors. With affordability and customization in 
mind, this could be done via 3D printing. This would allow for 
custom measurements and low costs that would allow for an 
iterative and fast design. 
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Another sensor system that could be used as opposed to the 
ultrasonic sensor is using a mechanical water level measuring 
system as seen in fuel gasoline tanks. While this would increase 
the cost of the physical device drastically and require much 
more expertise, it would ensure the longevity of the system. The 
mechanical sensor would not be prone to damage by rising 
water levels in the tank. 

To create a more complex system, a ML model could be 
implemented to forecast the harvesting and consumption of 
rainwater. By collecting forecasted precipitation data from an 
outside source like the NOAA or Open-Metro’s API [16] 
(available for free), as input data for the first ML model and the 
corresponding rise in water levels from previous rainstorms as 
the output, the model could predict when the tanks will fill up. 
A second ML model could take previous water consumption as 
an input in addition to forecasted temperature data to predict 
when the water tanks will be empty / rate of consumption.  

By using these ML models, the remote web application would 
become a powerhouse for the home gardener and rainwater 
harvester who is trying to maximize their water efficiency and 
conservation. The web app in addition to the notifications 
would be able to notify the user in advance and give an 
estimated date of empty and full tanks. In addition, it could help 
the harvester compute if more tanks would be in their best 
interest moving forward and denote a positive or negative ROI.  

All the above methods of modifying and improving this 
system could be useful to increase the longevity and 
resourcefulness of this project.  
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