
 1

Abstract—This paper presents the design and implementation

of a remote monitoring system for residential rainwater harvesting
tanks, aimed at improving water management for home
gardeners. The system utilizes an ESP32 microcontroller and an
ultrasonic sensor to measure water levels in the tanks. This data is
transmitted to AWS cloud services via MQTT, using AWS IoT
Core, DynamoDB, and Lambda functions for real-time
monitoring and data processing. The system also includes an EC2
hosted web application that allows users to view tank levels
remotely and receive notifications when the water levels reach
predefined thresholds.

The project addresses the challenges of water tank monitoring
by automating the data collection process and providing
notifications, reducing the need for manual checks. It is designed
to be low-power, affordable, and easily replicable, leveraging
widely accessible hardware and AWS’s free-tier services.
Additionally, the system is adaptable for future enhancements,
including the integration of machine learning models to predict
harvesting times and consumption patterns, further optimizing
rainwater use. The design also considers outdoor durability,
suggesting 3D printing for custom enclosures and the potential use
of mechanical sensors for increased longevity.

This work not only provides an efficient solution for home
gardeners but also lays the foundation for a scalable platform that
could be expanded to meet broader agricultural needs. By
combining IoT, cloud computing, and low-cost hardware, the
project demonstrates the potential of smart technologies in
sustainable water management.

Index Terms— Amazon Web Services (AWS), Automated
Reports, ESP32, Internet of Things (IoT), Smart Home, Rainwater
Harvesting, Water Tank.

I. INTRODUCTION
RACTICING environmentally friendly activities in ones day
to day life is becoming more popular as global warming

warnings rise. It is important to reduce, reuse, and recycle in
order to limit our individual negative footprints and impact on
the environment. One popular method to conserve water for
gardeners who live in rainy climates is to collect rain water to
use later when watering their plants. However, many gardeners
struggle with monitoring the water levels in their rain collection
tanks. This project aims to create a system that allows green
thumb gardeners to focus their energy on other green initiatives

This paper was submitted for review on December 2nd, 2024. The project

was in support by the authors parents and close relatives.
Yasmine D. Subbagh is a graduate student in Master of Science in Computer

Science and Software Engineering at the University of Washington – Bothell

and stay dry rather than having to manually check the state of
their water drums. The reason why I chose this project is
because I have relatives close to me who have faced issues with
monitoring their rainwater tanks and losing out on free
resources because they didn’t want to bear the cold or merely
forgot about them.

Living in Washington state, while it may feel gloomy and
saddening, we are lucky to receive 66 inches of annual average
rainfall in western Washington and an average of 156 days of
rain annually. The average water consumption of a single-
family home in Seattle, WA is 52 gallons [1], and according to
the EPA, 30% of residential water use is used outdoors [2]:
equating to the average single-family home in Seattle, WA
using 15 gallons of water a day on their yards (lawn and
gardens). Collecting rainwater for reuse is not only beneficial
to the environment, but also benefits the homeowners
economically. The average cost of a gallon of water in Seattle,
WA is three cents [3], while this may seem like a nominal
amount, with the average water consumption of a garden, it
comes out to $11.79 a month.

While the rain collector can see direct economic gains from
collecting rainwater, there are even more environmentally
friendly reasons to do so. Rainwater is better for the plants being
gardened. The water is 100% soft, meaning it is not chlorinated
and is higher in nitrogen and has a more elevated pH compared
to tap water [5]. Additionally, by collecting rainwater, less
water is going to rain runoffs [4] which helps save pipes and
avoids corrosion and solves drainage problems on the property.
Lastly, rainwater can be used in emergencies for indoor use
when properly treated [6].

In order to maximize their efforts to help the environment
and to minimize public utilities water bills, many households
have multiple water tanks. The issue with multiple tanks is
managing when to fill which tank as they fill up, many homes
have one singular tank collecting run off at a time and shuffle
them around as they fill up. Another issue that is present for all
water tank users is being able to monitor their consumption
during the gardening season. This makes creating a monitoring
system accompanied by a notification service an appropriate
step in adding the yard into a smart home household, for a tech
forward and simplified lifestyle.

By creating a system to help gardeners manage their water

(UWB) is affiliated with UWB’s Inclusivity, Diversity, Equity, and
Accessibility (IDEA) Lab and worked previously at OneRadio Corporation.
(email: ydns@uw.edu)

.

Rainwater Tank Monitoring: Taking the Smart
Home to the Yard

Yasmine D. Subbagh

P

 2

collection system, a single household can save and repurpose
tens if not hundreds of gallons of water a year. The system will
be implemented using an ultrasonic sensor which will monitor
the level of the water in the drums. The water level collected
will then be viewable for immediate monitoring and will also
trigger notifications to the users if the tanks are nearing full or
empty. The system will use Amazon Web Services (AWS) to
store and process the data in the cloud.

With the increased availability and accessibility of
microcontrollers and peripherals and cloud computing services
offering free services with improved documentation. This
system can easily be replicated by determined gardeners to
create a smart yard. The goal of the project is to create a system
that can be easily replicated.

The contributions made to this project include the hardware
setup and creation of the programs to be included in both the
device-level and cloud-level sections of the system, in addition
to the configuration of a server. The development of the
programs required research for not only the devices and cloud
service documentation: but also, tutorials that instruct on how
to integrate the different hardware and software systems
together, as well as tutoring on the hardware and development
of a data pipeline in the cloud.

II. RELATED WORK
While there are commercial water level monitoring systems

available to purchase, they vary in scale and methodology.
Many of these systems focus on systems that are similar in size
for smaller tanks, but more importantly, singular device
systems. Other papers focus on the benefits of rainwater
harvesting.

In a paper by Abdullah et al. a water level monitoring system
is explored using a PIC microcontroller 18F452, alarms, and
LCD screens [7]. The system is able to monitor the water level
in a tank and notify users via an alarm and LCD screen of the
current water level. While the user goals and hardware are
similar, this paper focuses on a local development of the
system, the water levels are not able to be monitored remotely.

A study completed by Das et al. again uses a microcontroller
to monitor the water levels of a tank and process the data on-
board to pump water into the tank as water levels drop [8]. The
system is fully autonomous, again however, is at a local
development scale. The system does not have a singular goal
they are trying to solve but is able to be reused for specialized
uses.

Another study by Ismail, Azizi, and Zariman studies the
validity of an internet of things (IoT) system that tracks the
water levels of damns/rivers and allows damn technicians to
open and close the damn gates from their personal devices [9].
It was found that the hardware system itself could lead to safer
working conditions and allows more visibility of the damn
status for residents along the river that could be impacted.

While there are contributions to previous studies on the
validity and benefits of water level monitoring systems, none
aim to solve the same problem, nor do they use the same
hardware and software combination. In a study by Baballe a

similar system is built, however a wire water level sensor is
used [10], while the system works, for larger scale systems and
water drums, it can be costly and technically expensive to
maintain such a sensor.

Work completed by Campisano et al. explores the benefits
and downfalls of urban rainwater harvesting systems. It is found
that while pure rainwater is not the safe for human consumption
unpurified, with treatment, becomes potable. It was also found
that at scale that rainwater harvesting is not financially viable,
but with smaller raw water extraction that is strictly outdoors
(do not need treatment and plumbing), the return on investment
is positive.

The main contributions of the project to the problem are to
provide an automated water level monitoring system for
outdoor residential use. This is achieved by using readily
available and affordable resources, while still achieving the
goal of creating a system that maintains accurate report of
current water levels and triggers notifications to users of
discrepancies. The impact of this approach is that an ultrasonic
sensor is used to determine the water level as opposed to
mechanical approaches or wire water monitors, this allows for
better precision and less room for hardware failure. Another
impact of this approach is the use of cloud services computing
rather than on-board computing, in addition to multiple tanks
being monitored in contrast to a singular device. This allows for
precise remote monitoring of many water tanks, giving home
gardeners accurate results within the comfort of inside their
home or on the go.

III. SYSTEM MODEL, PROBLEM STATEMENT, & ANALYSIS

A. System Model
The key modules of the system can be broken down into two

major groups: the physical hardware devices, and the cloud
resources and applications. Within the physical hardware
devices lie the ESP32 microcontroller and ultrasonic sensor.
The cloud resources include AWS IoT Core, AWS Lambda
Function, Amazon DynamoDB, Amazon Application
Programming Interface (API) Gateway, and Amazon Elastic
Compute Cloud (EC2). Figure 1 shows the relationship between
each module within the system.

Figure 1: System Diagram of Hardware and Cloud Resources

 3

The ESP32 is a microcontroller released in 2015 by Espressif
Systems with Wi-Fi and Bluetooth capabilities built-in while
still maintaining affordability and security at just $5 a unit [11].
As seen in Figure 2, the ESP32 is compact and supports the use
of many types and quantities of peripherals. Maier, Sharp, and
Vagapov showcase that the ESP32 is capable of excellent
performance and is great for real time applications (like IoT)
[12]. The ESP32 was chosen for this project due to its small
package, Wi-Fi capabilities, affordability, and the ample
support and documentation for developers along with simple
integration use with AWS. The integrated development
environment chosen to implement on the ESP32 was the
Arduino IDE, as it includes libraries and support for the ESP32
devices as well as its simplicity, it was chosen over PlatformIO
via VSCode because of its native integration. On the ESP32, the
Arduino library and other open-source libraries will be used,
including the ArduinoJSON, PubSubClient, WiFiClientSecure,
Wifi, and Wire libraries.

Figure 2: Image of the ESP32 Microcontroller

For the sensor collecting data within the system, an ultrasonic
sensor was used. An image can be seen in Figure 3 below. The
ultrasonic sensor emits high-frequency sound waves (ultrasonic
waves, they are above the human hearing range) towards the
surface of the water where the waves bounce off and return to
the sensor, using the time amount for the waves return (speed
of sound), the distance from the sensor to the water surface can
be calculated [13]. This sensor was used due to its affordability,
ease of access, and distance accuracy. The main input variable
for this project system is the distance of the water surface from
the sensor (mounted at the top of the water tanks), the output
will be notifying the user of predefined alert levels, as well as a
web app for on-the-fly monitoring.

Figure 3: Image of an Ultrasonic Sensor

AWS acts as the main hub for the system, facilitating the
MQTT communication from the devices and the cloud, as well
as data and application storage, and serving as an endpoint for
data retrieval. It offers a user interface (UI) that is easy to use
while still allowing for complex functionality and processing of
the collected data. AWS IoT core acts as the main entry point
of the collected data into the cloud service. The distance data
from each of the devices is published to AWS IoT Core via
MQTT where it is then redirected to AWS DynamoDB via a
message SQL rule. AWS DynamoDB is where the data is
housed within the cloud, it was chosen because of the scale of
the project and the simplicity of the data being inputted, the
NoSQL database service that supports key-value storage and
retrieval [14]. An AWS Lambda function is used to support an
AWS API Gateway. The lambda function retrieves the distance
of the water surface within a certain water tank given the water
tank device identification number from the DynamoDB table.
The AWS API Gateway GET call uses this lambda function to
allow external and simple retrieval of the data, returning the
values within a JSON message. An AWS EC2 server is used to
host and run the web apps that connect the user to the data. A
python script on the server is ran every 30 minutes via a cron
job, this application notifies the user via email if each individual
tank is near empty or full (by 20%). Also hosted on the same
EC2 server is a flask web application that gives the user remote
monitoring of the water tanks levels, allowing them to track the
water level for all the tanks in one location, no matter how full
the tanks are. Using this collection of AWS services allows for
the entire system to remain within the free tier provided by
AWS, making the cost burden of the system only the upfront
hardware costs.

B. Problem Statement & Analysis
The problem that is being addressed in this project is the

difficulty to monitor the water levels of residential gardeners’
rainwater harvesting tanks, as it is a burden to do so during the
rainy season in the pacific northwest (PNW) with multiple
water tanks. Many factors make monitoring the water tanks a
hassle, mainily the inability to predict when the tanks near full

 4

during collection season, in addition to needing to switch
which tank is currently connected to the roof water drainage
system. Many residential gardeners have multiple water tanks,
but only a few have a sophisticated system that are able to
continuously automatically fill all of the tanks within the
system, this creates an issue of needing to rearrange the tanks
or change the tank currently hooked up to the roof water
draining system. However, depending on the rain fall, a tank
can fill up anywhere between within a day or up to a month,
making predicting when to change the hookup very difficult.
Another barrier is the poor environment often the process must
occur in, going outside in the wet and cold is less than ideal
and leads to long periods where rainwater collection can be
wasted. The project’s main purpose is to aid the home
gardener by removing the necessity of having to predict the
water levels in the tanks and keep the gardener in the more
favorable warm and dry indoors. In doing so, the gardener will
be less deterred by the processes of home gardening and will
yield a higher return on interest (ROI). By implementing this
system, efficient monitoring and usage of rainwater can save
household tens of gallons of water usage annually. This
contributes to both environmental conservation and reduced
utility bills, encouraging sustainable practices among
gardeners.
 The assumptions in place for this project are that the
developers trying to implement this project has access to the
aforementioned physical devices. The implementations on the
cloud resources for this project can be done within the Free
Tier of AWS cloud services. In addition, it is assumed that this
project is to be used by residential rainwater harvesters within
a small scale that do not intend on purifying the water they
collect. Larger scale (commercial) projects require more
infrastructure that will push the data being transferred and
stored in the cloud to push cloud resource consumption over
what is allowed within the AWS Free Tier. Additionally,
water purification is costly and complicated, which would lead
the financial burden of the system to equate to a negative ROI.
But as this system is intended for home use, purification and
large-scale projects will not be considered.

IV. DESIGN AND IMPLEMENTATION
There are subgroups within the project system that require

different techniques and tools in order to implement the
system to satisfactory.

A. Physical Devices
The physical devices involved in this system are the ESP32,

ultrasonic sensor, and external power supply (portable power
bank). Both the ultrasonic sensor and the power supply are
connected to the ESP32, the ultrasonic sensor is connected to
the general-purpose input/output (GPIO) pins using female-to-
female jumper wires and the power supply is connected directly
to the microcontroller via USB-C. During the implementation
for this project, it was found that the voltage common collector
(VCC) pin on the ultrasonic sensor had to be connected to the
5v output on the ESP32 opposed to the 3.3v output to properly
power the device. The pins used for this implementation were
P12 (echo) and P13 (trigger).

With regards to the system, since it is an electrical circuit, it
is susceptible to water damage, and as the system resides within
a water tank, it is at high risk to damage. While a custom
designed 3D printed enclosure would be ideal, any plastic
enclosure sealed with duct tape is used within the
implementation of the project. It is also important to note that
the ultrasonic sensor must be oriented in the correct direction to
accurately measure the distance of the water surface within the
tank. The sensor should be aimed directly down towards the
floor of the drum. Additionally, the project was implemented
with 33.5-inch (internal) height water drums, this is within the
sensors reading distance, large tanks with a height over 60-
inches would not be able to calculate the distance to the bottom
of the drums.

The voltage for the sensor as previously mentioned is five
volts, this makes for a low-voltage option. While most
ultrasonic sensors are 5v, some can draw as little power as 3.3v
and would allow for the power supply life to be extended. The
power supply has not been pushed to full drainage, currently the
expected battery life is unknown. This is likely due to the small
power draw of the microcontroller and its peripheral, running
in deep sleep when not transmitting data.

Figure 4: An image of the Physical System, including: microcontroller,
ultrasonic sensor, and external power supply.

The physical device will have a program for implementing

the functionality of the microcontroller, as well as connecting
to Wi-Fi and authentication information needed to access the
cloud services. The initial setup method in the code base on the
physical devices connects the devices to Wi-Fi, then creates a
connection to AWS, and lastly sets the pins to the appropriate
modes (input and output). The continuously running code base
is compiled and uploaded to the devices (ESP32) via the
Arduino IDE. The distance measurements are taken every 20
seconds, this is to allow for accurate readings during heavy
rainstorms which can lead to fast rising water tanks levels.
When taking the distance measurements, the distance is

 5

calculated via the time it takes for the ultrasonic waves to return
to the sensor, requiring on board mathematical calculations.
Once the distance is calculated, the data must be converted into
a JSON message format in order to be sent to AWS IoT core
via MQTT protocol. This will be done using the open-source
ArduinoJSON and PubSubClient library.

When uploading this program to the ESP32, it is possible to
run into many issues and/or failure messages. The main one
being timeout issues. This is because the Wi-Fi connection
handler, AWS connection handler, and main program, all run
within a while-loop, if incorrect credentials are passed it can
cause timeout issues.

B. Cloud Resources
In the AWS IoT Core, the three ESP32s are setup as new

Things (can be done individually or as a family), this is where
all MQTT certificates and keys are created. These certificates
and keys need to be saved and kept within the secrets file of the
code base onboard the physical devices to be used when
connecting the ESP32s to the cloud resource. For the Thing
policy of each of the ESP32s, a policy must be attached to each
of their certificates, the policy should allow the device to
connect, publish, and subscribe to IoT Core. Each device has its
own topic it publishes to: “water1/pub”, “water2/pub”,
“water3/pub”.

In AWS DynamoDB a table must be created to store the data
and easily lookup the data given the key. From IoT Core, a
message routing rule must be made for each channel to repost
the data that is sent into IoT Core to the DynamoDB table. Each
device will post to its own topic on IoT Core, each rule will
redirect all posts from its topic to its corresponding row in
DynamoDB (given by the device identification number). The
key for the table is the device_id (number: 1-3) and the current
distance will be continuously updating (past values will not be
stored).

An AWS Lambda function will support the AWS API
Gateway REST API. The python script embedded in the lambda
function queries the DynamoDB table, retrieving the most
recent distance value for the given device. The API Gateway
passes a device_id number to the lambda function, where the
function then retrievers the most recent distance value from the
DynamoDB table, from there the lambda function passes the
value back to the API Gateway where it is packaged into a
JSON message for the response to the GET call. The REST API
can be used from anywhere, in and out of AWS.

To support the user accessed applications, an AWS EC2 VM
server hosts two applications. The first application sends the
user email notifications every 30 minutes if the water level is
within a warning zone. This is accomplished using a cron job
that executes a python script that checks the current water level
of each water tank, and for each tank, if it is within a full or
empty warning zone, sends an email to the user.

The second application that is hosted on the EC2 server that
is presented to the user is a web application. The web app serves
as a way for the user to use the system year-round. By allowing
for the user to see the current water levels year-round, they are
able to predict how long the harvested water will last them and

when all tanks are full to disconnect the system to avoid
flooding. The web app is hosted on the EC2 server, viewable
form any device with a minimal but clean design, and up to date
with helpful icons to indicate when tanks are near full or empty.

C. Connecting the Cloud Resources to the Physical Devices
The certification files and private keys from the previous

section should be stored where accessible from the device-level
program. In this implementation, a secrets.h header file was
created to hold all the keys and other private information
including the Wi-Fi SSID and passwords.

To connect the device to the cloud, the device-level program
must contain steps to enable connecting to AWS IoT Core,
publishing messages, collecting, and processing distance data.
In the step to connect to AWS IoT Core, first the program must
connect to the internet using the Arduino Wi-Fi library and
SSID information in the secrets.h header file. Next, the client is
to connect to the AWS IoT Core endpoint using PubSubClient
library. This step involves the use of the certification files and
keys. Once completed, the client will be connected to its
individual Thing (ex. Esp32-water) and be subscribed to its
owned topic (ex. “Water2/pub”).

In the code to publish a message, a JSON document must be
created so that it can be used to transfer the data using the
MQTT protocol. The JSON document will include the sensor
device identification number and the computed distance value
for the water surface from the ultrasonic sensor. This is then
published use the PubSubClient to the water(1/2/3)/pub topic.

The MQTT topics used in this system are water1/pub,
water2/pub, and water3/pub. The raw data collected by the
ultrasonic sensors is sent to the devices assigned topic. Since
the AWS IoT console allows users to modify the message
routing and publish their own messages to topics, users are able
to modify the notifications that are sent (or lack of) via email.
The device, topic, database pipeline architecture that the
applications retrieve that data from can be seen in figure 5.

Figure 5: Physical Device to AWS IoT Topic Publishing Route

V. EVALUATION
In order to evaluate the accuracy and efficiency of the

system, an experiment was conducted. Additionally, with the

 6

rising concerns to IoT security, some research was completed.
To assess the accuracy and efficient of the system, manual
measurements of water level distances were taken. To review
the security of the system, more research was completed on the
security of ESP32s and the possibility and ease of penetration
to the system and its data.

In order to evaluate the accuracy of the system, an
experiment was pursued to capture the distance readings and
accuracy in comparison to manual measurements. To do so, the
readings of the water tank were taken with the device and
compared to a manual reading. Manual readings were taken via
a ping pong ball attached to a string and dropped into the tank,
measuring the full length of the ball and string with no slack
(the ball floats on the water surface). The mean value for the
difference in measurements was .5cm (devices measure at
whole unit increments). The discrepancy could be a result in
human error during manual measurement, or errors in the
sensor. What could cause errors in the sensor are: miss
calculations, ultrasonic waves bouncing off other surfaces, etc.

Next, to evaluate efficiency in the system, ensuring the
system was able to continually measure water levels as they
rose needed to be tested. To align with the goals of the system,
a 5-gallon bucket was used instead of the 55-gallon water tanks
the device normally monitors. The device was placed at the top
of the bucket and the code was modified to post to IoT Core
every second. The bucket was slowly filled up with water via a
garden hose. Results found that as the water flowed into the
bucket, the distance value from the device continued to
decrease. This shows that the system was able to accurately and
continuously calculate and post the distance data.

Lastly, an experiment was created to check the devices
robustness via its ability to reestablish an internet and AWS
connection. With the device functioning as intended, it was
brought away from the Wi-Fi router to cause the internet and
therefor AWS connection to be lost, it was then returned to its
original position. This experiment was to mimic conditions if
electricity were to go out, internet outage, and to measure how
far the system could reach away from the home. It was found
that the device was able to reconnect to the cloud services 80%
of the time (8/10). The failures happened due to the device
booting into sleep mode before it was able to reconnect.

These tests prove that the system is accurate, efficient, and
robust. While the sensor was not able to complete exactly
accurate distance reads with and was therefore rounded for
simpler handling, given the needs of the users, it is far more
than accurate to complete the tasks at hand. And by using the
sensor over manual efforts to monitor, time and energy is saved.
The system is efficient and reliable, the system was able to
accurately monitor the water levels at they rose, ensuring the
users that the system can be trusted to given accurate results in
real-time. Lastly, the system is robust in being able to reconnect
itself without the need of user intervention. Allowing for a
hands-off system that can withstand outside forces.

However, the ESP32 is at risk to security threats. A study
done by Barybin et al. found that even unexperienced hackers
can easily penetrate the systems hosted on ESP32s and send
fake data over the to their corresponding web interfaces [17].

While this poses as a threat to loss of user data, this system does
not host data or operate outside of the system that poses any real
risk to users. Modifying of data, while can lead to users being
misled on their current rainwater tanks levels, pose no
information or physical threat. However, if personal data were
to be stored on board within the code base of the device, private
data leakage could become a larger issue.

VI. CONCLUSION
The purpose of this project was to create a system to aid the

home gardener with monitoring their rainwater harvested
collection tanks by creating a remote access monitoring
application in addition to pre-defined triggered notifications.
By integrating the ESP32 microcontroller, ultrasonic sensor,
and AWS cloud services, the system automates real-time
monitoring and notifications, removing the need for manual
checks and enhancing the convenience of residential rainwater
management.

The use of AWS IoT Core, DynamoDB, Lambda Function,
API Gateway and an EC2 hosted web application ensures
seamless data collection, processing and user accessibility. The
system’s low power consumption, accessible hardware, and
adherence to AWS Free Tier makes it an affordable option for
home gardeners. The equipment used for the project was
affordable and easily accessible for any persons for this project
to be replicated.

The project not only address the immediate challenges of
water tank monitoring but also lays the groundwork for a
scalable and adaptable platform that could a broader audience
with additional features (outlined in the next section). It serves
as a valuable step towards leveraging IoT and cloud
technologies for a smarter yard.

VII. FUTURE WORK
The implementation of this project included measuring and

calculating the distance / level of the water tanks and notifying
the users when the tanks are near empty or full. In future
iterations many modifications and improvements can be made
to create a more complex and robust system that can serve more
of the user’s needs. The system can be better developed to
withstand the wet and outdoor environment. In addition,
collecting outdoor data and implementing a machine learning
(ML) model can help gardeners predict harvesting times and
consumption use.

The physical device sits at the top of the tank peeping through
one of the water pass holes, it is currently protected via another
plastic tub on top of it. Over time, this tub can be removed by
wind or other circumstances, additionally, water can seep in or
rise out of the tank and compromise the device. The first
addition to the project to help protect the device is design and
creating a secure housing case for the device to better protect it
from the outdoors. With affordability and customization in
mind, this could be done via 3D printing. This would allow for
custom measurements and low costs that would allow for an
iterative and fast design.

 7

Another sensor system that could be used as opposed to the
ultrasonic sensor is using a mechanical water level measuring
system as seen in fuel gasoline tanks. While this would increase
the cost of the physical device drastically and require much
more expertise, it would ensure the longevity of the system. The
mechanical sensor would not be prone to damage by rising
water levels in the tank.

To create a more complex system, a ML model could be
implemented to forecast the harvesting and consumption of
rainwater. By collecting forecasted precipitation data from an
outside source like the NOAA or Open-Metro’s API [16]
(available for free), as input data for the first ML model and the
corresponding rise in water levels from previous rainstorms as
the output, the model could predict when the tanks will fill up.
A second ML model could take previous water consumption as
an input in addition to forecasted temperature data to predict
when the water tanks will be empty / rate of consumption.

By using these ML models, the remote web application would
become a powerhouse for the home gardener and rainwater
harvester who is trying to maximize their water efficiency and
conservation. The web app in addition to the notifications
would be able to notify the user in advance and give an
estimated date of empty and full tanks. In addition, it could help
the harvester compute if more tanks would be in their best
interest moving forward and denote a positive or negative ROI.

All the above methods of modifying and improving this
system could be useful to increase the longevity and
resourcefulness of this project.

REFERENCES
[1] “Residential Drinking Water Rates - Utilities |
seattle.gov,” www.seattle.gov. https://www.seattle.gov/utilities/your-
services/accounts-and-payments/rates/water/residential-water-rates (accessed
Dec. 03, 2024).
[2] US EPA, “US Outdoor Water Use | WaterSense | US EPA,” Epa.gov, 2019.
https://19january2017snapshot.epa.gov/www3/watersense/pubs/outdoor.html
(accessed Dec. 03, 2024).
[3] G. B. / F. Guy, “Rain-soaked Seattle has nation’s highest water bills,” The
Seattle Times, Apr. 30, 2015. https://www.seattletimes.com/seattle-
news/data/rain-soaked-seattle-has-nations-highest-water-bills/ (accessed Dec.
03, 2024).
[4] L. Grossman, “Rainwater collection - Washington State Department of
Ecology,” ecology.wa.gov. https://ecology.wa.gov/Water-Shorelines/Water-
supply/Water-recovery-solutions/Rainwater-collection (accessed Dec. 03,
2024).
[5] B. Grant, “Pros And Cons Of Using Rain Water For Plants,” Gardening
Know How, Dec. 14, 2022. https://www.gardeningknowhow.com/garden-how-
to/watering/rainwater-versus-tap-water.htm (accessed Dec. 03, 2024).
[6] G. Author, “Rain Collection: How Using a Rainwater Collection System
Can Help You Survive,” Valley Food Storage, May 30, 2023.
https://valleyfoodstorage.com/blogs/inside-vfs/rainwater-collection-water-
collection-
system?srsltid=AfmBOop_fnF5yStG6aHObVdLSdr8ZBKhQhZjiMpIH0rJ3C
-ToPnIW_oq (accessed Dec. 04, 2024).
[7] A. A. Ismail, M. A. Azizi, and A. Zariman, “Smart Water Level
Indicator,” International Journal of Recent Technology and Applied Science,
vol. 2, no. 1, pp. 48–58, Mar. 2020, doi:
https://doi.org/10.36079/lamintang.ijortas-0201.59.
[8] S. Das, S. Dhar, P. Deb, and P. S. Majumdar, “Microcontroller Based Water
Level Indicator and Controller,” Asian Journal of Applied Science and
Technology (AJAST), vol. 1, no. 5, pp. 181–182, Jun. 2017, Accessed: Dec. 03,
2024. [Online]. Available: https://iijsr.com/data/uploads/999.pdf
[9] A. A. Ismail, M. A. Azizi, and A. Zariman, “Smart Water Level
Indicator,” International Journal of Recent Technology and Applied Science,

vol. 2, no. 1, pp. 48–58, Mar. 2020, doi:
https://doi.org/10.36079/lamintang.ijortas-0201.59.
[10] Muhammad Ahmad Baballe, M. ibrahim Bello, A. S. Muhammad, and A.
Muhammad, “Automatic Water Level Indicator: A Review,” 3rd International
Conference on Applied Engineering and Natural Sciences, Jul. 2022, doi:
https://doi.org/10.5281/zenodo.8146408.
[11] “ESP32-C61 Delivering Affordable Wi-Fi 6 Connectivity | Espressif
Systems,” Espressif.com, 2024.
https://www.espressif.com/en/products/socs/esp32-c61 (accessed Dec. 04,
2024).
[12] M. Babiuch, P. Foltynek, and P. Smutny, “Using the ESP32
Microcontroller for Data Processing,” 2019 20th International Carpathian
Control Conference (ICCC), May 2019, doi:
https://doi.org/10.1109/carpathiancc.2019.8765944.
[13] J. S. Cook, “Ultrasonic Sensors: How They Work (and How to Use Them
with Arduino),” Arrow.com, Apr. 04, 2018.
https://www.arrow.com/en/research-and-events/articles/ultrasonic-sensors-
how-they-work-and-how-to-use-them-with-arduino (accessed Dec. 03, 2024).
[14] AWS, “Amazon DynamoDB - Overview,” Amazon Web Services, Inc.,
2024.https://aws.amazon.com/dynamodb/ (accessed Dec. 03, 2024).
[15] “Senix Ultrasonic Sensor FAQs | Senix Corporation,” Senix Distance and
Level Sensors. https://senix.com/faqs/ (accessed Dec. 03, 2024).
[16] “⚡ Features | Open-Meteo.com,” Open-meteo.com, 2022. https://open-
meteo.com/en/features#available-apis (accessed Dec. 04, 2024).
[17] O. Barybin, E. Zaitseva, and V. Brazhnyi, “Testing the Security ESP32
Internet of Things Devices,” 2019 IEEE International Scientific-Practical
Conference Problems of Infocommunications, Science and Technology (PIC
S&T), Oct. 2019, doi: https://doi.org/10.1109/picst47496.2019.9061269.

