
1

Abstract—Autonomous vehicles require both reactive and
proactive responses to their environment. In this paper we
research one-stage and two-stage object detection with YOLO,
Fast RCNN, Mask RCNN, and SSD. In general, one-stage object
detectors are faster and have lower accuracy. On the other hand,
two-stage models have higher accuracy and are slower. We use
COCO as the backbone of our models. We use Ultralytics to train
YOLO, Detectron2 to train Fast and Mask RCNN, and
TorchVision to train SSD. Our results show that YOLO has the
best speed performance, while Mask RCNN has the best accuracy.
Additionally, we find support to explain why Fast and Mask
RCNN models have greater accuracy in general. We believe that a
wider variety of data and more training epochs for two-stage
object detectors would provide better accuracy. Training and
testing data practices that we were limited to due to resource
constraints for our experiment are likely to have had great effect
on our results that can be addressed in future work.

Index Terms—Autonomous Vehicles, Fast RCNN, Mask RCNN,
Object Detection, SSD, YOLO.

I. INTRODUCTION

A. Background

Object detection is different from classification because the
purpose of object detection is to classify multiple instances of
objects in images whereas classification aims to classify images
with a single instance of an object in them. In general, objection
detection is either classified as two-stage or one-stage. The
main difference between these two methods is that two-stage is
accuracy-focused and one-stage is speed-focused.

Two-stage object detectors break down prediction into two
distinct steps: firstly, region proposal which identifies potential
regions of an image that might contain objects, and secondly,
classifying objects in the proposed regions and refining their
location with bounding boxes. Two distinct stages allow
resources to be focused on each stage which allows better
proposals, classification, and bounding box refinement.
Separation of region proposal and classification allows the
second stage to zoom in and detect small objects and objects in
crowded scenes; two things that one-stage object detectors
struggle with.

Notable two-stage object detection models are RCNN
(Regional CNN), Fast RCNN, Faster RCNN, and Mask RCNN.
Fast and Faster RCNN improved the speed of RCNN, where
Fast introduced region of interest (ROI) pooling, and Faster
RCNN introduced the region proposal network (RPN) creating
a nearly end-to-end trainable model. Mask RCNN extended
Faster RCNN to perform instance segmentation for each
detected object [1].

Real-world applications of two-stage object detectors that
require high accuracy include medical image analysis,
autonomous driving, detailed scene understanding, and quality

control in manufacturing. Detecting small tumors or lesions in
CT or MRI scans requires high accuracy and precise
localization is critical for treatment planning. Companies like
Waymo rely heavily on robust detection and localization of
pedestrians, cyclists, other vehicles, and traffic signs, all of
which can be small or occluded. Identifying small defects or
verifying component placement in complex assemblies
demands high precision. Training these models requires large,
labeled datasets, such as COCO, and careful tuning.

One-stage object detectors treat prediction as a regression
problem. A CNN is used to extract features such as edges that
are directly fed into a detection head that predicts bounding box
coordinates, class probabilities, and confidence scores
simultaneously across the image grid or feature map [2].

Real-world applications of one-stage object detectors include
autonomous vehicles, security and surveillance, robotics, traffic
management, retail analytics, and manufacturing quality
control. Companies like Waymo rely heavily on real-time
object detection. Monitoring systems can identify intrusions,
unauthorized individuals, crowd density, and trigger security
alarms. Traffic cameras can be monitored for vehicle flow,
detection of accidents, and optimization of traffic signal timing.

B. Case Study

We apply object detection to autonomous vehicle research.
One-stage object detection is needed because reaction is
required in cases like a grocery cart rolling into the road.
Alternatively, two-stage object detection is needed because
proactive response is required to correctly take action for road
signs. In the former case, classifying an object doesn’t matter
as much as detecting it, and in the latter case, both detection and
classification are required.

We use object detection models pretrained on COCO. The
object detectors we researched are Fast RCNN, Mask RCNN,
YOLO, and SSD. The first two object detectors are two-stage
and the latter two are one-stage. Therefore, we hypothesize that
the first two models will have the slowest and most accurate car
detection, and vice versa for the latter two models.

Our research questions are as follows: How many true and false
positives are detected? How many true and false negatives? Key
metrics for our research are accuracy, precision, recall, and
mAP. We also consider training and testing speed to be a key
metric. Since we used Google Colab with public resources for
computation, our measurements for speed are at worst rough
approximations.

This case study models a real-world problem and its potential
solutions. Solutions to this problem have two dimensions: speed
and accuracy. On one hand, one-stage object detectors are fast

Survey of Object Detection

Ethan Davis, Robert Che, Yasmine Subbagh, Kyle Manning

2

and can significantly improve speed of inference. On the other
hand, two-stage models can significantly improve accuracy.
Both aspects are critical to safe autonomous driving.

II. METHODS

This section focuses on presenting prominent deep learning
models for object detection: Fast RCNN, Mask RCNN, YOLO,
and SSD. These architectures represent a range of design
approaches, each balancing detection speed, accuracy, and
computational cost.

A. Fast RCNN

a. Background

The original Vanilla RCNN architecture described in 2013
paper [3] consisted of the Selective Search algorithm for region
proposal, followed by a CNN to extract features for each
proposal. The extracted features were then passed into a
separate classifier and linear regressor model to classify the
objects in the image and refine the bounding boxes.

Figure 1.1.1: Vanilla RCNN Framework

Unlike its predecessor, Fast RCNN first performs convolution
over the entire image, producing a shared feature map, which is
then forwarded into the Region of Interest (RoI) pooling layer
[4]. Although the RoIs are still determined by the Selective
Search algorithm, Fast R-CNN allows for end-to-end training
and supports batch processing since the classifier and regressor
layers can directly branch off the RoI pooling layer.

Figure 1.1.2: Fast RCNN Framework

b. Case Study

Since the original Vanilla RCNN paper did not clearly specify
the CNN backbone used, we employed a ResNet-50 model as a
substitute for feature extraction. Although ResNet50 was
introduced approximately two years after the original R-CNN,

it was chosen as a candidate because it served as a reasonable
approximation of the CNN architectures commonly used at the
time.

In the second iteration of our implementation, we used [5] an
untrained version of Detectron2’s Fast RCNN, which features
a ResNet-50-FPN backbone. The model weights were
randomly initialized using a fixed seed to ensure
reproducibility.

The Fast R-CNN model was trained for 100 epochs using a
batch size of 16 and a learning rate of 0.00025 on the same
subset of data, the first 5,000 images from the COCO 2017
dataset. Initial testing over few epochs revealed explosive loss
curves. To stabilize training, we enabled norm gradient clipping
with a clip value of 1.

Initially our goal was to implement a Vanilla RCNN to establish
a baseline of comparison with its other flavors. However,
during the implementation process, we found that the region
proposal component was incompatible with batching, as it
required separate, non-parallelized processing for each image.
To ensure standard batch sizes for all models, we switched to
Fast RCNN as the closest equivalent replacement for Vanilla
RCNN.

B. Mask RCNN

This subsection focuses on Mask RCNN, outlining its
architectural components and the specific steps taken to
implement and fine-tune the model for our case study.

a. Background

The Mask RCNN architecture is built upon the Faster RCNN
architecture, adding pixel wise segmentation to combine both
object detection and instance segmentation. It was first
presented by Facebook AI Research at the Computer Vision
Conference in 2017, it was the first to provide both object
detection and instance segmentation in a single unified
framework. The original Mask RCNN outperformed every
existing single-model entry on every task at the time, including
the Common Objects in Context (COCO) 2016 challenge
winners.

The architecture of Mask RCNN is built upon the Faster RCNN
framework, with the addition of an extra “mask head” branch,
as seen in figure 1.2.1. While the pipeline of the framework
produces object detection, the additional branch enables fine-
grained pixel-level boundaries for accurate and detailed
instance segmentation.

The model first extracts features from the input image using a
backbone convolutional neural network, our specific version
uses ResNet50. These features are then used by a region
proposal network (RPN) to identify a set of candidate object
regions, also known as regions of interest (RoIs). For each RoI,
the RoIAlign layer extracts a small, fixed size feature map. This

3

features map is then fed into two parallel branches. One branch
predicts the object’s class and defines the bounding box
coordinates (Faster RCNN). The second branch generates a
binary mask for each RoI, which effectively separated the
object from the background at the precise pixel level.

Figure 1.2.1: Mask RCNN Framework

The Mask RCNN network architecture consists of the
ResNet50 CNN backbone for feature extraction, the RPN for
generating proposals, and the two separate heads for object
classification and bounding box regression, and for mask
prediction.

b. Case Study

The Mask RCNN for this implementation used a ResNest50
FPN 3X backbone trained on the COCO dataset, consisting of
44 million parameters [6]. In addition to the pretrained
backbone, it was fine-tuned, provided by Dectron2 on the car
subset of the COCO dataset. Afterwards, the fine-tuned model
on cars subcategory, is used to detect vehicles within the
entirety of the COCO validation set. Object detection is
completed with confidence scores ranging between 0.7 and 0.95
to observe the tradeoff of precision and recall.

The initial pre-fine tune training was done over 10 epochs with
16 samples per batch using the first 5,000 sample of COCO’s
training dataset. The stochastic gradient descent (SGD)
optimizer with momentum started with a learning rate of
0.00025. The fine-tuning of the model was done again over 10
epochs, and with 16 samples per batch to mitigate the risk of
RAM over-consumption on the GPU. The dataset for fine
tuning were samples pulled from COCO that included cars,
roughly 9,000 images were sampled for training.

The goal of using Mask RCNN over the other models presented
in this case study is the added pixel level instance segmentation.
While we are aware of the performance speed tradeoffs of this
model, we hope to gain more precision and clarity in the results.
The addition of masks rather than just bounding boxes are key
in fields such as autonomous self-driving vehicles where data
fuels safety and trust.

C. YOLO

a. Background

You only look once (YOLO) was first published by Redmon et
al from the University of Washington, Allen Institute for AI,
and Facebook AI Research in 2016. At that time, other real-time

object detectors already existed. However, YOLO separated
itself from the rest with its ability to detect objects with
accuracy similar to two-stage techniques.

Real-time image processing is defined as 30 frames per second
(fps) or higher. The original base model of YOLO processed at
a rate of 45 fps. Its fast model, Fast YOLO, processed 155 fps
while still achieving double the mAP of other real-time
detectors [7].

YOLO also differed from detectors such as RCNN that
repurpose classifiers to perform detection. For example,
deformable parts model (DPM) used a sliding window where a
classifier is run at evenly spaced locations over the entire image.
RCNN was a newer approach than DPM and used region
proposal methods to first find potential bounding boxes and
then run a classifier on these boxes. Object detection was
reframed by YOLO to be a regression problem that goes
straight from image pixels to bounding box coordinates and
class probabilities.

The original YOLO learned generalizable representations of
objects. When trained on natural images and artwork, YOLO
outperformed methods like DPM and RCNN by a wide margin.
YOLO was less likely to break down when applied to
unexpected inputs [7].

Although YOLO was fast, it did not have state-of-the-art
accuracy. It also struggled to detect small objects. These
properties were tradeoffs of using YOLO.

The network was implemented as a CNN. The initial
convolutional layers extracted features from images and fully
connected layers predicted output probabilities and coordinates.
The original YOLO architecture was inspired by the GoogleNet
model for image classification. There are 24 convolutional
layers followed by 2 fully connected layers [7].

Figure 1.4.1: Original YOLO backbone with 24
convolutional layers and 2 fully connected layers.

The original YOLO network was trained for about 135 epochs
with batch size of 64, momentum 0.9, and decay 0.0005.
Overfitting was avoided by using a layer dropout rate of 0.5.
Additionally, data augmentation was used with random scaling
and translations up to 20% of the original image, and random
exposure and saturation of the image by a factor of 1.5 in the
HSV color space [7].

4

YOLO took input images and divided them in grid cells that
predict bounding boxes in parallel. The architecture of YOLO
imposed strong constraints on bounding box predictions. Each
grid cell could only predict two boxes, and this limits the
number of nearby objects it can predict. YOLO struggled with
small objects in groups. The model used coarse features for
predicting bounding boxes since it had multiple down sampling
layers from the input image.

Additionally, the loss function treated all errors the same
whether from small or large bounding boxes. In general, a small
error in a large bounding box is benign but affects IOU much
greater for a small bounding box. The main source of error for
YOLO is incorrect localization.

Since it was originally published, YOLO has gone through
many major versions. Between 2015 and 2020 YOLO went
through 5 major versions. Currently, the latest version of YOLO
is v11.

YOLO v2, also known as YOLO 9000, was introduced in the
same year as YOLO and was designed to be faster and more
accurate. It used anchor boxes as a set of predefined bounding
boxes. When predicting bounding boxes, YOLO v2 used a
combination of the anchor boxes and predicted offsets to
determine the final bounding box. Also introduced were batch
normalization to improve accuracy and stability of the model,
multi-scale training to improve the detection performance of
small objects, and a new loss function better suited to object
detection tasks [8].

YOLO v3 introduced in 2018 used a new backbone, Darknet-
53, whereas YOLO v2 used Darknet-19. The new YOLO v3
also used anchor boxes with different scales and aspect ratios
which improved its ability to predict objects of different shapes
and sizes because YOLO v2 anchor boxes all had the same size.
To refine its ability to detect small objects, YOLO v3 also
introduced feature pyramid networks (FPN) that are used to
detect objects at multiple scales [8].

All YOLO versions v4 and higher are not considered the
“official” YOLO because Joseph Redmon, the creator of
YOLO, left the AI community prior to their development.
YOLO v5 was introduced as an open-source project and is
maintained by Ultralytics. Researchers from Taiwan and China
have also released versions of YOLO. Currently, the latest
version of YOLO is v11 that was released by Ultralytics.

For this case study we use YOLO v8 which has a
CSPDarknet53 backbone [9, 10]. It also has neck and head
structure that offers learning over multiple image resolutions. A
detection head is also used that offers finely tuned anchor box
assignment for IOU to better minimize the loss function. See
Figure 1.4.2 that displays the YOLO v8 architecture.

Figure 1.4.2: YOLO v8 architecture with backbone, neck
and head, and detection head

b. Case Study

An Ultralytics YOLO yolov8m model pretrained on COCO was
fine-tuned with the Stanford Cars training dataset. Afterwards
the model was used to detect cars in the COCO validation
dataset. This object detection is done with confidence scores
ranging between 0.7 to 0.95 to observe the tradeoff of precision
and recall.

Our YOLO model was fine tuned for 50 epochs with batch size
16. Larger batch sizes risk GPU out-of-memory errors. The
Adam optimizer was used with initial and final learning rates as
0.0003 and 0.01 respectively. Generally, the Stanford Cars
dataset is designed to be used to classify types of cars, however
we used it to fine tune detection of the COCO car class.

Our goal was to fine tune our YOLO model well enough that it
would maintain high precision and recall for car detection when
filtering multi-object and multi-class images in COCO. It was a
matter of convenience to use a YOLO model pretrained on
COCO. Our intention with fine tuning using Stanford Cars was
to suppress the other classes learned during pretraining.

D. SSD

a. Background

The Single Shot MultiBox Detector (SSD) architecture was
originally proposed in 2015 by Wei Liu et al from UNC,
Zoox, Google, and University of Michigan. In 2016, their
paper was presented at the European Conference on Computer
Vision.

SSD is a single stage grid-based object detection method that
utilizes predefined anchor boxes instead of a separate region
proposal network [12]. To handle objects of different shapes
and sizes, the anchor boxes have varying aspect ratios and
scales, as illustrated in Figure 1.5.1 [12].

Figure 1.5.1: SSD framework

5

Additionally, the SSD architecture adds hierarchical auxiliary
layers to the truncated base network (in the case of the original
paper, a VGG16 backbone) [12]. These layers allow for
improved object detection at different scales [12]. Finally,
small kernels produce class scores and offset values relative to
the default boxes [12].

b. Case Study

We employed a TorchVision SSD300 model with a VGG16
backbone to match the original paper. The model was
pretrained on COCO and then fine-tuned with the Stanford
Cars dataset to improve detection of the COCO car class.

For fine-tuning, we used the AdamW algorithm for the
optimizer with a learning rate of 0.001 and a weight decay
coefficient of 0.0001. We additionally used a batch size of 32
samples. The fine-tuning started with a maximum epoch count
of 50, but we implemented early stopping based on mAP for
the validation set with a patience limit of 15 epochs and
validation mAP checks every 5 epochs. This resulted in the
fine-tuning stopping early at 20 epochs and our saved model
being fine-tuned for only 5 epochs.

III. RESULTS

In the following section, we discuss the results, both qualitative
and quantitative, obtained from evaluating the four object
detection models. We analyze their performance in terms of
precision, recall, and mean average precision (mAP), and
provide visual examples to highlight each model's strengths and
limitations.

A. Fast RCNN

Fast R-CNN demonstrates linear improvement over the course
of 100 training epochs. However, as illustrated in Figures 2.1.1
and 2.1.2, the rate of progress was sufficiently gradual enough
to suggest suboptimal convergence during gradient descent.
Furthermore, the relatively lower mean average precision
scores compared to foreground classification accuracy indicate
that the model has a high rate of false positives.

Given that, as previously mentioned, the Fast R-CNN
architecture has been deprecated in favor of Faster R-CNN, the
stability issues encountered during training are understandable.
Since gradient clipping was applied to mitigate the exploding
gradient problem, the slow convergence observed in gradient
descent suggests that the selection of hyperparameters in
gradient clipping was suboptimal.

Figure 2.1.1 Total mean average precision of Fast RCNN
over 100 Epochs for all classes on the COCO2017
validation set with increasing performance.
Note: Detectron2 reports mAP scores with a range between
0 to 100.

Figure 2.1.2 Total classification accuracy of foreground
objects of Fast RCNN over 100 epochs on COCO2017
validation set with increasing performance

B. Mask RCNN

Our Detectron2 Mask R-CNN ResNet50 RPN 3X was initially
tuned on a Google Colab A100 GPU for approximately just less
than one hour. The model performs decently well across all
classes. Figure 2.2.1 depicts that while the model is slowly on
average increasing its accuracy, there is no consistency.
Additionally, the mean average precision (mAP) score after this
round of training was 76.1%.

6

Figure 2.2.1: Total classification accuracy of foreground
object on Mask RCNN over 10 epochs on COCO 2017
validation set

The model was then fine-tuned on the COCO car subset training
data over 10 epochs, taking roughly 1.25 hours to complete.
First results showed that the model was performing much better
at classification for cars compared to the rest of the COCO
classes, having an AP score as much as 20 times higher.

Figure 2.2.2: Average precision for the car class of Mask
RCNN over 10 epochs on the COCO 2017 validation set

However, as we completed testing inference on the COCO
dataset. We can see better under the hood that the model is not
performing as well as we would like. Figure 2.2.3 depicts this
prediction mismatch much better.

2.2.3: Precision-recall PR curve for Mask RCNN fine-tuned
for cars

The model seems to have a strong lean towards cars after the
fine-tuning on the car class. Often labeling items that are not
cars, as cars, and even with higher confidence. Additionally, the
model seems to no longer classify other classes as often, and if
it does, with much lower confidence than before. We can see
this in figure 2.2.4, where nominal items in the background are
being classified as cars, and more prominent people in the
foreground are not classified at all.

2.2.4: Examples of predicted bounding boxes and masks
from COCO validation set, fine-tuned Mask RCNN on the
COCO car subset

Overall, our validation results for our fine-tuned Mask R-CNN
are extremely poor, even worse than our initial tuning stage on
COCO. The model appears to be overconfident and heavily
biased in “car” as a class, predicting a lot of false positives. The
mAP score has dropped significantly, all the way down to
13.1%, a loss of 63%. The bar chart in figure 2.2.5 shows the
heavy class imbalance, the low AP score across the board
reflect the confusion that the model has, predicting other classes
as “cars”.

Figure 2.2.5: AP scores for all COCO classes after fine-
tuning Mask RCNN on COCO cars subset

C. YOLO

Our Ultralytics yolov8m model was fine tuned in Google Colab
with a T4 GPU for approximately 4 hours. For nearly every
epoch out of 50, the loss decreased without flattening. This
suggests that fine tuning would benefit from additional epochs.

Figure 2.3.1 shows the precision and recall (PR) curve from fine
tuning. It shows that fine tuning goes remarkably well. In all
cases precision and recall are nearly equal to 1.0. Figures 2.3.2
and 2.3.3 show examples of ground truth and predicted boxes
from fine tuning on Stanford Cars.

7

Figure 2.3.1: PR curve from fine tuning Ultralytics YOLO
on Stanford Cars with high performance results

Figure 2.3.2: Example of ground truth bounding boxes from
Stanford Cars

Figure 2.3.3: Example of predicted bounding boxes from
fine tuning YOLO on Stanford Cars

Our first impression of the results from fine tuning YOLO was
that they were promising. However, our results from prediction
on the COCO validation set were unlike our results from fine
tuning. See Figure 2.3.4 for our PR curve from prediction on
the COCO validation set with mAP 0.028. Compare this to our
mAP 0.995 that was from fine tuning.

Figures 2.3.5 and 2.3.6 show examples of ground truth and
predicted bounding boxes on the COCO validation set. We see
cases where YOLO mistakes the front of planes for cars, and
this is understandable. However, we also see cases where
groups of scooter or motorcycle wheels are detected as cars, and
this is less understandable since the body of the car is not
represented.

Additionally, we see cases where cars are not detected in
images when we are predicting on the COCO validation set.
These are images where cars are small relative to the scale of
the image. We know that YOLO struggles to detect small
objects in general. Even since its original architecture YOLO
has struggled to detect small objects. Recall that the reason for
this is related to the design decision that has grid cells predict
classes for a limited number of neighbor cells. This design is a
reason why YOLO is fast but also why it can be less accurate
and miss small objects.

Figure 2.3.4: PR curve from inference on COCO validation
data with low performance

Figure 2.3.5: Example of ground truth bounding boxes of
cars from the COCO validation set

Figure 2.3.6: Example of predicted bounding boxes of cars
on the COCO validation set using our fine-tuned YOLO
model

Not pictured here are cases where plates or bowls of food are
detected as cars. It is possible that this happens because plates,
bowls, and cars generally have rounded edges. Also, food and
the body of cars is often colorful. Since YOLO solves a
regression problem for object detection, it is possible that these

8

features of cars and food make them similar. Again, this design
choice of YOLO architecture makes it fast but at the same time
less accurate.

Our test results from YOLO after 50 epochs are poor. However,
they are better than our first YOLO model that was fine-tuned
on Stanford Cars for just 10 epochs. Also remember that our
loss function from fine tuning YOLO had not flattened after 50
epochs. This suggests that we have not fine-tuned YOLO well
enough to accurately detect cars in the YOLO validation set.

D. SSD

Figure 2.4.1: Training loss history for SSD

As illustrated in Figure 2.4.1, the loss during fine-tuning
slowly decreased over the 20 epochs before early stopping
triggered. However, the validation mAP after just 5 epochs
(0.6734) was higher than the validation mAP values after 10,
15, and 20 epochs (0.6684, 0.6486, and 0.6506 respectively).
With the model fine-tuned for 5 epochs, the mAP for the
Stanford Cars test set was 0.6749.

Moving on to inference with COCO, our SSD model’s
performance was extremely poor. Even at a very low
confidence threshold of 0.05, the model was unable to produce
any true positives across almost 10,000 images.

Figure 2.4.2: An example of false positives produced by
SSD (detecting cars where there are none)

Figure 2.4.3: An example of false positives produced by
SSD (correctly identifying a car, but the predicted bounding
boxes are under the IoU threshold in relation to the ground
truth box)

Figure 2.4.4: An example of false negatives produced by
SSD (not detecting ground truth cars)

Figure 2.4.2 displays an example of the type of false positives
that the SSD model commonly struggles with. The model
frequently detects cars where there are none. Meanwhile,
Figure 2.4.3 displays a different kind of false positive that the
model has issues with. Even though the model appears to
recognize certain components of a car here, the predicted
bounding boxes are well under the IoU threshold of 0.5 in
relation to the ground truth bounding box. Figure 2.4.4 shows
an example of several false negatives (i.e. not detecting
ground truth cars). The model appears to struggle with
recognizing cars from certain angles such as the backside, as
well as recognizing cars that are further away.

IV. DISCUSSION

In the following discussion, we summarize the key findings
from our evaluation of the four object detection models and
reflect on the implications of their performance. We also
address the limitations encountered during the project,
including dataset constraints, class imbalances, and resource
limitations that may have impacted the results.

A. Summary

We tested four solutions to detect cars in images: YOLO, Fast
RCNN, Mask RCNN, and SSD. The key dimensions of our
solutions are speed and accuracy. In other words, our central
research question was how quickly and accurately can we detect
cars in images?

9

Fast RCNN was trained with validation from scratch using the
first 5000 images from the COCO training set and first 625
images from the COCO validation set. The model was tested
using the second 625 images from the COCO validation set.
Training took 6 hours over 10 epochs and was performed with
a Google Colab T4 GPU. Testing took 1 minute. The mAP from
testing across all classes was 0.016.

Mask RCNN was pretrained on COCO. It was fine-tuned with
validation using the 9000 images from the COCO training set
that contain car annotations. The first 5000 car images were
used for training and the next 1000 car images were used for
validation. The model was tested using the 5000 images from
the COCO validation set. Fine tuning took 1 hour over 10
epochs and was done with a Google Colab A100 GPU. Testing
took 12 minutes. The mAP from testing for car detection was
12.552.

YOLO was pretrained on COCO. It was fine-tuned using the
first 6000 images from the Stanford Cars training set and the
first 600 images from the Stanford Cars validation set. The
model was tested using the 5000 images from the COCO
validation set. Fine tuning took 4 hours over 50 epochs and was
done with a Google Colab T4 GPU. Testing took 2 minutes.
The mAP from testing for car detection was 0.0215.

SSD was pretrained on COCO. It was fine-tuned using the first
4000 images from the Stanford Cars training set, and it was
tested using roughly 10,000 images from COCO. Using a
Google Colab L4 GPU, fine-tuning took 30 minutes over 20
epochs and testing took 7 minutes. The model was unable to
produce any true positives.

As we expected before our experiment, these results show that
YOLO and SSD have faster inference than both Fast and Mask
RCNN. We expected this because YOLO and SSD are one-
stage models and both RCNN models are two-stage. This
supports the idea that one-stage models should be used in cases
where autonomous vehicles must react to their environment.

Additional factors that make YOLO faster than Fast and Mask
RCNN, as well as SSD, is its architecture. YOLO v8 that we
used for our experiment uses a CSPNet53 backbone and the
RCNN models use ResNet50. CSPNet53 is designed to be
faster than ResNet50 [9, 11]. It splits features maps so that some
go through residual layers with heavy computation and others
go through lighter computation. ResNet is a standard
benchmark in CNN architectures that CSPNet53 was designed
to be faster than.

Unexpectedly YOLO also has higher mAP than the Fast RCNN
model. We believe Fast RCNN has a lower mAP because it has
limited training data and epochs. However, considering that
Fast RCNN’s mAP is close to YOLO’s, we believe that Fast
RCNN’s mAP would be higher with more training and testing
resources. Mask RCNN outperformed YOLO in our evaluation.
However, its mAP remains relatively low, likely due to
suboptimal training. We believe that with a more diverse
training dataset and additional fine-tuning epochs, Mask RCNN
could achieve significantly better results. As a two-stage

detector, it has the potential for higher accuracy when properly
trained. With more experimentation in the training routine, we
also believe that SSD could achieve much better results and
offer a middle ground between the RCNN models and YOLO
in terms of speed and accuracy.

B. Limitations

a. Model Testing

Our model backbones were trained on COCO which is
commonly used for object detectors with popular libraries like
PyTorch, Detectron2, and Ultralytics. We also use the COCO
validation set to test our models. This is a limitation of our
experiments because the COCO validation set is indirectly used
to train our models.

Since we test our models on the COCO validation set, we
introduce bias into our experiments. To maintain internal
validity for our experiments, we should test on an entirely
unseen dataset. Pascal VOC datasets are real-life images similar
to COCO and since they were not used during training, they
would be better datasets to test our object detection models.

b. YOLO

Ultralytics trains YOLO models on COCO and all its 80 classes.
This dataset has a wide range of scenes, scales, and hues from
real-life. Our YOLO model was fine-tuned on the Stanford Cars
dataset that has well-centered high-quality images of cars.
Unfortunately, Stanford Cars and COCO do not have similar
enough images for fine tuning YOLO to be generally effective
during predictions.

Fine tuning on Stanford Cars overfits our model so that it best
detects cars when they are well-centered and high-quality in
images. However, it also makes false positive predictions of
other objects like food when they have these features too. See
Figure 3.1.1 where a well-centered high-quality image of food
with rounded edges of the plate and colorful body is
misclassified as a car. Also see Figure 3.1.2, one of few images
from the COCO validation set that has a well-centered high-
quality car.

Figure 3.1.1: YOLO misclassifies well-centered high-
quality image of food like Stanford Cars images are
formatted

10

Figure 3.1.2: YOLO model that was fine tuned on Stanford
Cars classifies a well-centered high-quality image of a car
from the COCO validation set with 1.0 confidence

It is possible that fine tuning on the Stanford Cars dataset could
perform better predictions on the COCO validation set if
techniques like random scaling, jitter, and hue augmentation
were used during fine tuning. Furthermore, if we know we are
doing object detection of cars in the COCO validation set, then
maybe using Pascal VOC would be better for fine tuning since
its images are similar to COCO. The COCO dataset is messy,
has occlusion, and low-resolution images of cars. The Stanford
Cars dataset was not similar enough out of the box to detect cars
in real-life images.

c. Fast RCNN

Like Vanilla RCNN, very few libraries still support the Fast
RCNN architecture. In addition, both models are known for
their slower training and processing speeds. Since gradient
clipping was not employed as a hyperparameter in the other
models, it was difficult to directly observe the advantage of Fast
R-CNN’s generally higher accuracy within the same number of
training epochs.

Additionally, gradient clipping was approached heuristically in
our experiment. It may be feasible to evaluate the model’s
training performance across a wide range of gradient clipping
values over an extended number of epochs. A gradient clipping
value of 0.01 is generally recommended when training over
larger numbers of epochs to maintain training stability. A two-
way ANOVA can be conducted by varying the choice of
optimizer.

d. Mask RCNN

Due to the nature of Mask RCNN’s architecture and outputs,
any data used for either training or validation requires masking
input. While the goal for all the models was to be fine-tuned on
car specific data that was different than the data used for initial
training, most datasets did not include masking or required a lot
of preprocessing. While the other models fine-tuned on
Standford Cars, the lack of mask data and limited time forced
us to use a subset of COCO. The subset was created by only
including samples that had cars as ground truths. It is
understood that this is not good practice, to be using the same
dataset for multiple levels of training, as well as used for testing.

Due to the complex architecture of Mask RCNN and the added
cost of instance segmentation, it required a significant amount
of GPU memory and training time. As a result, we had to make
compromises in terms of batch size, training iterations, and
augmentation strategies to ensure the model could be trained
within our available hardware and time constraints. These
adjustments may have limited its full potential performance in
our experiments.

e. SSD

Compared to YOLO (another one-stage architecture), SSD is
generally expected to trade some speed in exchange for higher
accuracy. The model did provide a middle ground between the
RCNN models and YOLO in terms of speed, but it was unable
to produce any true positives. This is likely attributable to the
training routine we utilized. SSD may have required more
extensive fine-tuning on the Stanford Cars dataset and a less
restrictive early-stopping mechanism. The SSD architecture
also could have struggled with the shift from the Stanford Cars
dataset (centered and high-quality car images) to the more
diverse COCO dataset.

Additionally, our SSD model would possibly have benefited
from an architecture different from that described in the original
paper. For instance, the NVIDIA SSD300 model replaces the
VGG16 backbone with a ResNet-50 one due to the VGG16
backbone being “obsolete” [13].

C. Future Work

In this project, we primarily used the COCO dataset for both
training and evaluation. While COCO provides a rich and
diverse set of object categories and annotations, using the same
dataset for both stages limits our ability to assess the model's
generalization capabilities on truly unseen data.

Moving forward, we aim to evaluate our model on external
benchmark datasets such as Google Open Images, Pascal VOC,
and Cityscapes. These datasets offer a variety of scenes, object
distributions, and annotation styles that would allow us to better
understand the robustness and transferability of our model.
Unfortunately, due to time constraints, we were unable to
integrate and evaluate against these datasets in the current
iteration.

Expanding to other datasets will help identify potential
overfitting to COCO-specific features, assess performance on
rare or unseen classes, and guide improvements in training
strategies to enhance generalization in real-world scenarios.

Furthermore, YOLO is well supported through Ultralytics that
makes training models easy. Mask RCNN is also well
supported through libraries like Detectron2 and PyTorch.
However, Vanilla and Fast RCNN are deprecated because
Faster RCNN is now faster and more accurate. To get results
with better accuracy with RCNN models, we should limit future
experiments to current RCNN architectures.

11

D. Conclusion

We have trained, tested, and compared one-stage and two-stage
object detection models for the purpose of autonomous vehicle
research. Using YOLO, Fast RCNN, Mask RCNN, and SSD we
hypothesized that one-stage models would be faster and have
lower accuracy, and vice versa for two-stage object detectors.
Our results showed that YOLO performed best in terms of
speed, and Mask RCNN performed best in terms of accuracy.
However, we provided reasons why our experiment still
supports two-stage object detection over single-stage for our
case study and the improvements for all models.

REFERENCES
[1] Ultralytics. (n.d.). Two-Stage Object Detectors - Discover the

power of two-stage object detectors—accuracy-focused solutions
for precise object detection in complex computer vision tasks.
https://www.ultralytics.com/glossary/two-stage-object-detectors

[2] Ultralytics. (n.d.-a). One-Stage Object Detectors - Discover the
speed and efficiency of one-stage object detectors like YOLO,
ideal for real-time applications like robotics and surveillance.
https://www.ultralytics.com/glossary/one-stage-object-detectors

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic
segmentation,” arXiv (Cornell University), Nov. 2013, doi:
https://doi.org/10.48550/arxiv.1311.2524

[4] R. Girshick, “Fast R-CNN,” 2015 IEEE International Conference
on Computer Vision (ICCV), pp. 1440–1448, Dec. 2015, doi:
https://doi.org/10.1109/iccv.2015.169.

[5] “Detectron2,” ai.facebook.com.
https://ai.meta.com/tools/detectron2/

[6] E. Hassan, N. El-Rashidy, and F. M. Talaa, “Review: Mask R-
CNN Models,” Nile Journal of Communication and Computer
Science, vol. 3, no. 1, pp. 17–27, May 2022, doi:
10.21608/njccs.2022.280047.

[7] Joseph, R., Santosh, D., Ross, G., & Ali, F. (2015). You only look
once: Unified, Real-Time Object Detection. arXiv (Cornell
University). https://doi.org/10.48550/arxiv.1506.02640

[8] Kundu, R. (n.d.). YOLO: Algorithm for Object Detection
Explained [+Examples]. V7. https://www.v7labs.com/blog/yolo-
object-detection

[9] Torres, J. (2025, January 2). YOLOv8 Architecture; Deep Dive
into its Architecture -Yolov8. YOLOv8. https://yolov8.org/yolov8-
architecture/#2_YOLOv8_Architecture_Overview

[10] Yaseen, M. (2024). What is YOLOv8: An In-Depth Exploration of
the Internal Features of the Next-Generation Object Detector.
arXiv (Cornell University).
https://doi.org/10.48550/arxiv.2408.15857

[11] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick,
“Mask R-CNN,” presented at the Conference on Computer Vision,
2017, pp. 2961–2969. Accessed: Jun. 06, 2025. [Online].
Available:
https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Ma
sk_R-CNN_ICCV_2017_paper.pdf

[12] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y.,
& Berg, A. C. (2016, September). Ssd: Single shot multibox
detector. In European conference on computer vision (pp. 21-37).
Cham: Springer International Publishing.
https://doi.org/10.48550/arXiv.1512.02325

[13] “SSD v1.1 for PyTorch.” NVIDIA NGC Catalog
catalog.ngc.nvidia.com/orgs/nvidia/resources/ssd_for_pytorch

