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Abstract—Autonomous vehicles require both reactive and 
proactive responses to their environment. In this paper we 
research one-stage and two-stage object detection with YOLO, 
Fast RCNN, Mask RCNN, and SSD. In general, one-stage object 
detectors are faster and have lower accuracy. On the other hand, 
two-stage models have higher accuracy and are slower. We use 
COCO as the backbone of our models. We use Ultralytics to train 
YOLO, Detectron2 to train Fast and Mask RCNN, and 
TorchVision to train SSD. Our results show that YOLO has the 
best speed performance, while Mask RCNN has the best accuracy. 
Additionally, we find support to explain why Fast and Mask 
RCNN models have greater accuracy in general. We believe that a 
wider variety of data and more training epochs for two-stage 
object detectors would provide better accuracy. Training and 
testing data practices that we were limited to due to resource 
constraints for our experiment are likely to have had great effect 
on our results that can be addressed in future work. 
 

Index Terms—Autonomous Vehicles, Fast RCNN, Mask RCNN, 
Object Detection, SSD, YOLO. 

I. INTRODUCTION 
 
A. Background 
 
Object detection is different from classification because the 
purpose of object detection is to classify multiple instances of 
objects in images whereas classification aims to classify images 
with a single instance of an object in them. In general, objection 
detection is either classified as two-stage or one-stage. The 
main difference between these two methods is that two-stage is 
accuracy-focused and one-stage is speed-focused. 
 
Two-stage object detectors break down prediction into two 
distinct steps: firstly, region proposal which identifies potential 
regions of an image that might contain objects, and secondly, 
classifying objects in the proposed regions and refining their 
location with bounding boxes. Two distinct stages allow 
resources to be focused on each stage which allows better 
proposals, classification, and bounding box refinement. 
Separation of region proposal and classification allows the 
second stage to zoom in and detect small objects and objects in 
crowded scenes; two things that one-stage object detectors 
struggle with. 
 
Notable two-stage object detection models are RCNN 
(Regional CNN), Fast RCNN, Faster RCNN, and Mask RCNN. 
Fast and Faster RCNN improved the speed of RCNN, where 
Fast introduced region of interest (ROI) pooling, and Faster 
RCNN introduced the region proposal network (RPN) creating 
a nearly end-to-end trainable model. Mask RCNN extended 
Faster RCNN to perform instance segmentation for each 
detected object [1]. 
 
Real-world applications of two-stage object detectors that 
require high accuracy include medical image analysis, 
autonomous driving, detailed scene understanding, and quality 

control in manufacturing. Detecting small tumors or lesions in 
CT or MRI scans requires high accuracy and precise 
localization is critical for treatment planning. Companies like 
Waymo rely heavily on robust detection and localization of 
pedestrians, cyclists, other vehicles, and traffic signs, all of 
which can be small or occluded. Identifying small defects or 
verifying component placement in complex assemblies 
demands high precision. Training these models requires large, 
labeled datasets, such as COCO, and careful tuning. 
 
One-stage object detectors treat prediction as a regression 
problem. A CNN is used to extract features such as edges that 
are directly fed into a detection head that predicts bounding box 
coordinates, class probabilities, and confidence scores 
simultaneously across the image grid or feature map [2]. 
 
Real-world applications of one-stage object detectors include 
autonomous vehicles, security and surveillance, robotics, traffic 
management, retail analytics, and manufacturing quality 
control. Companies like Waymo rely heavily on real-time 
object detection. Monitoring systems can identify intrusions, 
unauthorized individuals, crowd density, and trigger security 
alarms. Traffic cameras can be monitored for vehicle flow, 
detection of accidents, and optimization of traffic signal timing. 
 
B. Case Study 
 
We apply object detection to autonomous vehicle research. 
One-stage object detection is needed because reaction is 
required in cases like a grocery cart rolling into the road. 
Alternatively, two-stage object detection is needed because 
proactive response is required to correctly take action for road 
signs. In the former case, classifying an object doesn’t matter 
as much as detecting it, and in the latter case, both detection and 
classification are required. 
 
We use object detection models pretrained on COCO. The 
object detectors we researched are Fast RCNN, Mask RCNN, 
YOLO, and SSD. The first two object detectors are two-stage 
and the latter two are one-stage. Therefore, we hypothesize that 
the first two models will have the slowest and most accurate car 
detection, and vice versa for the latter two models. 
 
Our research questions are as follows: How many true and false 
positives are detected? How many true and false negatives? Key 
metrics for our research are accuracy, precision, recall, and 
mAP. We also consider training and testing speed to be a key 
metric. Since we used Google Colab with public resources for 
computation, our measurements for speed are at worst rough 
approximations. 
 
This case study models a real-world problem and its potential 
solutions. Solutions to this problem have two dimensions: speed 
and accuracy. On one hand, one-stage object detectors are fast 
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and can significantly improve speed of inference. On the other 
hand, two-stage models can significantly improve accuracy. 
Both aspects are critical to safe autonomous driving. 
 

II. METHODS 
 
This section focuses on presenting prominent deep learning 
models for object detection: Fast RCNN, Mask RCNN,  YOLO, 
and SSD. These architectures represent a range of design 
approaches, each balancing detection speed, accuracy, and 
computational cost. 
 
A. Fast RCNN 

 
a. Background 

 
The original Vanilla RCNN architecture described in 2013 
paper [3] consisted of the Selective Search algorithm for region 
proposal, followed by a CNN to extract features for each 
proposal. The extracted features were then passed into a 
separate classifier and linear regressor model to classify the 
objects in the image and refine the bounding boxes.  
 

 
Figure 1.1.1: Vanilla RCNN Framework 

 
Unlike its predecessor, Fast RCNN first performs convolution 
over the entire image, producing a shared feature map, which is 
then forwarded into the Region of Interest (RoI) pooling layer 
[4]. Although the RoIs are still determined by the Selective 
Search algorithm, Fast R-CNN allows for end-to-end training 
and supports batch processing since the classifier and regressor 
layers can directly branch off the RoI pooling layer. 
 

 
Figure 1.1.2: Fast RCNN Framework 

 
b. Case Study 

 
Since the original Vanilla RCNN paper did not clearly specify 
the CNN backbone used, we employed a ResNet-50 model as a 
substitute for feature extraction. Although ResNet50 was 
introduced approximately two years after the original R-CNN, 

it was chosen as a candidate because it served as a reasonable 
approximation of the CNN architectures commonly used at the 
time. 
 
In the second iteration of our implementation, we used [5] an 
untrained version of Detectron2’s Fast RCNN, which features 
a ResNet-50-FPN backbone. The model weights were 
randomly initialized using a fixed seed to ensure 
reproducibility. 
 
The Fast R-CNN model was trained for 100 epochs using a 
batch size of 16 and a learning rate of 0.00025 on the same 
subset of data, the first 5,000 images from the COCO 2017 
dataset. Initial testing over few epochs revealed explosive loss 
curves. To stabilize training, we enabled norm gradient clipping 
with a clip value of 1. 
 
Initially our goal was to implement a Vanilla RCNN to establish 
a baseline of comparison with its other flavors. However, 
during the implementation process, we found that the region 
proposal component was incompatible with batching, as it 
required separate, non-parallelized processing for each image. 
To ensure standard batch sizes for all models, we switched to 
Fast RCNN as the closest equivalent replacement for Vanilla 
RCNN. 
 
B. Mask RCNN 
 
This subsection focuses on Mask RCNN, outlining its 
architectural components and the specific steps taken to 
implement and fine-tune the model for our case study. 
 

a. Background 
 
The Mask RCNN architecture is built upon the Faster RCNN 
architecture, adding pixel wise segmentation to combine both 
object detection and instance segmentation. It was first 
presented by Facebook AI Research at the Computer Vision 
Conference in 2017, it was the first to provide both object 
detection and instance segmentation in a single unified 
framework. The original Mask RCNN outperformed every 
existing single-model entry on every task at the time, including 
the Common Objects in Context (COCO) 2016 challenge 
winners. 
 
The architecture of Mask RCNN is built upon the Faster RCNN 
framework, with the addition of an extra “mask head” branch, 
as seen in figure 1.2.1. While the pipeline of the framework 
produces object detection, the additional branch enables fine-
grained pixel-level boundaries for accurate and detailed 
instance segmentation.  
 
The model first extracts features from the input image using a 
backbone convolutional neural network, our specific version 
uses ResNet50. These features are then used by a region 
proposal network (RPN) to identify a set of candidate object 
regions, also known as regions of interest (RoIs). For each RoI, 
the RoIAlign layer extracts a small, fixed size feature map. This 
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features map is then fed into two parallel branches. One branch 
predicts the object’s class and defines the bounding box 
coordinates (Faster RCNN). The second branch generates a 
binary mask for each RoI, which effectively separated the 
object from the background at the precise pixel level.  
 

 
Figure 1.2.1: Mask RCNN Framework 

 
The Mask RCNN network architecture consists of the 
ResNet50 CNN backbone for feature extraction, the RPN for 
generating proposals, and the two separate heads for object 
classification and bounding box regression, and for mask 
prediction.  
 

b. Case Study 
 
The Mask RCNN for this implementation used a ResNest50 
FPN 3X backbone trained on the COCO dataset, consisting of 
44 million parameters [6]. In addition to the pretrained 
backbone, it was fine-tuned, provided by Dectron2 on the car 
subset of the COCO dataset. Afterwards, the fine-tuned model 
on cars subcategory, is used to detect vehicles within the 
entirety of the COCO validation set. Object detection is 
completed with confidence scores ranging between 0.7 and 0.95 
to observe the tradeoff of precision and recall.  
 
The initial pre-fine tune training was done over 10 epochs with 
16 samples per batch using the first 5,000 sample of COCO’s 
training dataset. The stochastic gradient descent (SGD) 
optimizer with momentum started with a learning rate of 
0.00025. The fine-tuning of the model was done again over 10 
epochs, and with 16 samples per batch to mitigate the risk of 
RAM over-consumption on the GPU. The dataset for fine 
tuning were samples pulled from COCO that included cars, 
roughly 9,000 images were sampled for training.  
 
The goal of using Mask RCNN over the other models presented 
in this case study is the added pixel level instance segmentation. 
While we are aware of the performance speed tradeoffs of this 
model, we hope to gain more precision and clarity in the results. 
The addition of masks rather than just bounding boxes are key 
in fields such as autonomous self-driving vehicles where data 
fuels safety and trust.   
 
C. YOLO 
 

a. Background 
 
You only look once (YOLO) was first published by Redmon et 
al from the University of Washington, Allen Institute for AI, 
and Facebook AI Research in 2016. At that time, other real-time 

object detectors already existed. However, YOLO separated 
itself from the rest with its ability to detect objects with 
accuracy similar to two-stage techniques. 
 
Real-time image processing is defined as 30 frames per second 
(fps) or higher. The original base model of YOLO processed at 
a rate of 45 fps. Its fast model, Fast YOLO, processed 155 fps 
while still achieving double the mAP of other real-time 
detectors [7]. 
 
YOLO also differed from detectors such as RCNN that 
repurpose classifiers to perform detection. For example, 
deformable parts model (DPM) used a sliding window where a 
classifier is run at evenly spaced locations over the entire image. 
RCNN was a newer approach than DPM and used region 
proposal methods to first find potential bounding boxes and 
then run a classifier on these boxes. Object detection was 
reframed by YOLO to be a regression problem that goes 
straight from image pixels to bounding box coordinates and 
class probabilities. 
 
The original YOLO learned generalizable representations of 
objects. When trained on natural images and artwork, YOLO 
outperformed methods like DPM and RCNN by a wide margin. 
YOLO was less likely to break down when applied to 
unexpected inputs [7]. 
 
Although YOLO was fast, it did not have state-of-the-art 
accuracy. It also struggled to detect small objects. These 
properties were tradeoffs of using YOLO. 
 
The network was implemented as a CNN. The initial 
convolutional layers extracted features from images and fully 
connected layers predicted output probabilities and coordinates. 
The original YOLO architecture was inspired by the GoogleNet 
model for image classification. There are 24 convolutional 
layers followed by 2 fully connected layers [7]. 
 

 
Figure 1.4.1: Original YOLO backbone with 24 
convolutional layers and 2 fully connected layers. 

 
The original YOLO network was trained for about 135 epochs 
with batch size of 64, momentum 0.9, and decay 0.0005. 
Overfitting was avoided by using a layer dropout rate of 0.5. 
Additionally, data augmentation was used with random scaling 
and translations up to 20% of the original image, and random 
exposure and saturation of the image by a factor of 1.5 in the 
HSV color space [7]. 
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YOLO took input images and divided them in grid cells that 
predict bounding boxes in parallel. The architecture of YOLO 
imposed strong constraints on bounding box predictions. Each 
grid cell could only predict two boxes, and this limits the 
number of nearby objects it can predict. YOLO struggled with 
small objects in groups. The model used coarse features for 
predicting bounding boxes since it had multiple down sampling 
layers from the input image. 
 
Additionally, the loss function treated all errors the same 
whether from small or large bounding boxes. In general, a small 
error in a large bounding box is benign but affects IOU much 
greater for a small bounding box. The main source of error for 
YOLO is incorrect localization. 
 
Since it was originally published, YOLO has gone through 
many major versions. Between 2015 and 2020 YOLO went 
through 5 major versions. Currently, the latest version of YOLO 
is v11. 
 
YOLO v2, also known as YOLO 9000, was introduced in the 
same year as YOLO and was designed to be faster and more 
accurate. It used anchor boxes as a set of predefined bounding 
boxes. When predicting bounding boxes, YOLO v2 used a 
combination of the anchor boxes and predicted offsets to 
determine the final bounding box. Also introduced were batch 
normalization to improve accuracy and stability of the model, 
multi-scale training to improve the detection performance of 
small objects, and a new loss function better suited to object 
detection tasks [8]. 
 
YOLO v3 introduced in 2018 used a new backbone, Darknet-
53, whereas YOLO v2 used Darknet-19. The new YOLO v3 
also used anchor boxes with different scales and aspect ratios 
which improved its ability to predict objects of different shapes 
and sizes because YOLO v2 anchor boxes all had the same size. 
To refine its ability to detect small objects, YOLO v3 also 
introduced feature pyramid networks (FPN) that are used to 
detect objects at multiple scales [8]. 
 
All YOLO versions v4 and higher are not considered the 
“official” YOLO because Joseph Redmon, the creator of 
YOLO, left the AI community prior to their development. 
YOLO v5 was introduced as an open-source project and is 
maintained by Ultralytics. Researchers from Taiwan and China 
have also released versions of YOLO. Currently, the latest 
version of YOLO is v11 that was released by Ultralytics. 
 
For this case study we use YOLO v8 which has a 
CSPDarknet53 backbone [9, 10]. It also has neck and head 
structure that offers learning over multiple image resolutions. A 
detection head is also used that offers finely tuned anchor box 
assignment for IOU to better minimize the loss function. See 
Figure 1.4.2 that displays the YOLO v8 architecture. 
 
 

 
Figure 1.4.2: YOLO v8 architecture with backbone, neck 
and head, and detection head 

 
b. Case Study 

 
An Ultralytics YOLO yolov8m model pretrained on COCO was 
fine-tuned with the Stanford Cars training dataset. Afterwards 
the model was used to detect cars in the COCO validation 
dataset. This object detection is done with confidence scores 
ranging between 0.7 to 0.95 to observe the tradeoff of precision 
and recall. 
 
Our YOLO model was fine tuned for 50 epochs with batch size 
16. Larger batch sizes risk GPU out-of-memory errors. The 
Adam optimizer was used with initial and final learning rates as 
0.0003 and 0.01 respectively. Generally, the Stanford Cars 
dataset is designed to be used to classify types of cars, however 
we used it to fine tune detection of the COCO car class. 
 
Our goal was to fine tune our YOLO model well enough that it 
would maintain high precision and recall for car detection when 
filtering multi-object and multi-class images in COCO. It was a 
matter of convenience to use a YOLO model pretrained on 
COCO. Our intention with fine tuning using Stanford Cars was 
to suppress the other classes learned during pretraining. 
 
D. SSD 
 

a. Background 
 
The Single Shot MultiBox Detector (SSD) architecture was 
originally proposed in 2015 by Wei Liu et al from UNC, 
Zoox, Google, and University of Michigan. In 2016, their 
paper was presented at the European Conference on Computer 
Vision. 
 
SSD is a single stage grid-based object detection method that 
utilizes predefined anchor boxes instead of a separate region 
proposal network [12]. To handle objects of different shapes 
and sizes, the anchor boxes have varying aspect ratios and 
scales, as illustrated in Figure 1.5.1 [12]. 
 

 
Figure 1.5.1: SSD framework 
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Additionally, the SSD architecture adds hierarchical auxiliary 
layers to the truncated base network (in the case of the original 
paper, a VGG16 backbone) [12]. These layers allow for 
improved object detection at different scales [12]. Finally, 
small kernels produce class scores and offset values relative to 
the default boxes [12]. 
 

b. Case Study 
 
We employed a TorchVision SSD300 model with a VGG16 
backbone to match the original paper. The model was 
pretrained on COCO and then fine-tuned with the Stanford 
Cars dataset to improve detection of the COCO car class. 
 
For fine-tuning, we used the AdamW algorithm for the 
optimizer with a learning rate of 0.001 and a weight decay 
coefficient of 0.0001. We additionally used a batch size of 32 
samples. The fine-tuning started with a maximum epoch count 
of 50, but we implemented early stopping based on mAP for 
the validation set with a patience limit of 15 epochs and 
validation mAP checks every 5 epochs. This resulted in the 
fine-tuning stopping early at 20 epochs and our saved model 
being fine-tuned for only 5 epochs. 

III. RESULTS 
 
In the following section, we discuss the results, both qualitative 
and quantitative, obtained from evaluating the four object 
detection models. We analyze their performance in terms of 
precision, recall, and mean average precision (mAP), and 
provide visual examples to highlight each model's strengths and 
limitations. 
 
A. Fast RCNN 
 
Fast R-CNN demonstrates linear improvement over the course 
of 100 training epochs. However, as illustrated in Figures 2.1.1 
and 2.1.2, the rate of progress was sufficiently gradual enough 
to suggest suboptimal convergence during gradient descent. 
Furthermore, the relatively lower mean average precision 
scores compared to foreground classification accuracy indicate 
that the model has a high rate of false positives. 
 
Given that, as previously mentioned, the Fast R-CNN 
architecture has been deprecated in favor of Faster R-CNN, the 
stability issues encountered during training are understandable. 
Since gradient clipping was applied to mitigate the exploding 
gradient problem, the slow convergence observed in gradient 
descent suggests that the selection of hyperparameters in 
gradient clipping was suboptimal.  
 

 
Figure 2.1.1 Total mean average precision of Fast RCNN 
over 100 Epochs for all classes on the COCO2017 
validation set with increasing performance. 
Note: Detectron2 reports mAP scores with a range between 
0 to 100. 

 

 
Figure 2.1.2 Total classification accuracy of foreground 
objects of Fast RCNN over 100 epochs on COCO2017 
validation set with increasing performance 

 
B. Mask RCNN 
 
Our Detectron2 Mask R-CNN ResNet50 RPN 3X was initially 
tuned on a Google Colab A100 GPU for approximately just less 
than one hour. The model performs decently well across all 
classes. Figure 2.2.1 depicts that while the model is slowly on 
average increasing its accuracy, there is no consistency. 
Additionally, the mean average precision (mAP) score after this 
round of training was 76.1%.  
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Figure 2.2.1: Total classification accuracy of foreground 
object on Mask RCNN over 10 epochs on COCO 2017 
validation set 

 
The model was then fine-tuned on the COCO car subset training 
data over 10 epochs, taking roughly 1.25 hours to complete. 
First results showed that the model was performing much better 
at classification for cars compared to the rest of the COCO 
classes, having an AP score as much as 20 times higher.  

 

 
Figure 2.2.2: Average precision for the car class of Mask 
RCNN over 10 epochs on the COCO 2017 validation set  

 
However, as we completed testing inference on the COCO 
dataset. We can see better under the hood that the model is not 
performing as well as we would like. Figure 2.2.3 depicts this 
prediction mismatch much better. 
 

 
2.2.3: Precision-recall PR curve for Mask RCNN fine-tuned 
for cars 

 

The model seems to have a strong lean towards cars after the 
fine-tuning on the car class. Often labeling items that are not 
cars, as cars, and even with higher confidence. Additionally, the 
model seems to no longer classify other classes as often, and if 
it does, with much lower confidence than before. We can see 
this in figure 2.2.4, where nominal items in the background are 
being classified as cars, and more prominent people in the 
foreground are not classified at all.  
 

 
2.2.4: Examples of predicted bounding boxes and masks 
from COCO validation set, fine-tuned Mask RCNN on the 
COCO car subset 

 
Overall, our validation results for our fine-tuned Mask R-CNN 
are extremely poor, even worse than our initial tuning stage on 
COCO. The model appears to be overconfident and heavily 
biased in “car” as a class, predicting a lot of false positives. The 
mAP score has dropped significantly, all the way down to 
13.1%, a loss of 63%. The bar chart in figure 2.2.5 shows the 
heavy class imbalance, the low AP score across the board 
reflect the confusion that the model has, predicting other classes 
as “cars”.  
 

 
Figure 2.2.5: AP scores for all COCO classes after fine-
tuning Mask RCNN on COCO cars subset 

 
C. YOLO 
 
Our Ultralytics yolov8m model was fine tuned in Google Colab 
with a T4 GPU for approximately 4 hours. For nearly every 
epoch out of 50, the loss decreased without flattening. This 
suggests that fine tuning would benefit from additional epochs. 
 
Figure 2.3.1 shows the precision and recall (PR) curve from fine 
tuning. It shows that fine tuning goes remarkably well. In all 
cases precision and recall are nearly equal to 1.0. Figures 2.3.2 
and 2.3.3 show examples of ground truth and predicted boxes 
from fine tuning on Stanford Cars. 
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Figure 2.3.1: PR curve from fine tuning Ultralytics YOLO 
on Stanford Cars with high performance results 

 

 
Figure 2.3.2: Example of ground truth bounding boxes from 
Stanford Cars 

 

 
Figure 2.3.3: Example of predicted bounding boxes from 
fine tuning YOLO on Stanford Cars 

 
Our first impression of the results from fine tuning YOLO was 
that they were promising. However, our results from prediction 
on the COCO validation set were unlike our results from fine 
tuning. See Figure 2.3.4 for our PR curve from prediction on 
the COCO validation set with mAP 0.028. Compare this to our 
mAP 0.995 that was from fine tuning. 
 
Figures 2.3.5 and 2.3.6 show examples of ground truth and 
predicted bounding boxes on the COCO validation set. We see 
cases where YOLO mistakes the front of planes for cars, and 
this is understandable. However, we also see cases where 
groups of scooter or motorcycle wheels are detected as cars, and 
this is less understandable since the body of the car is not 
represented. 
 

Additionally, we see cases where cars are not detected in 
images when we are predicting on the COCO validation set. 
These are images where cars are small relative to the scale of 
the image. We know that YOLO struggles to detect small 
objects in general. Even since its original architecture YOLO 
has struggled to detect small objects. Recall that the reason for 
this is related to the design decision that has grid cells predict 
classes for a limited number of neighbor cells. This design is a 
reason why YOLO is fast but also why it can be less accurate 
and miss small objects. 
 

 
Figure 2.3.4: PR curve from inference on COCO validation 
data with low performance 

 

 
Figure 2.3.5: Example of ground truth bounding boxes of 
cars from the COCO validation set 

 

 
Figure 2.3.6: Example of predicted bounding boxes of cars 
on the COCO validation set using our fine-tuned YOLO 
model 

 
Not pictured here are cases where plates or bowls of food are 
detected as cars. It is possible that this happens because plates, 
bowls, and cars generally have rounded edges. Also, food and 
the body of cars is often colorful. Since YOLO solves a 
regression problem for object detection, it is possible that these 
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features of cars and food make them similar. Again, this design 
choice of YOLO architecture makes it fast but at the same time 
less accurate. 
 
Our test results from YOLO after 50 epochs are poor. However, 
they are better than our first YOLO model that was fine-tuned 
on Stanford Cars for just 10 epochs. Also remember that our 
loss function from fine tuning YOLO had not flattened after 50 
epochs. This suggests that we have not fine-tuned YOLO well 
enough to accurately detect cars in the YOLO validation set. 
 
D. SSD 

 

 
Figure 2.4.1: Training loss history for SSD 

 
As illustrated in Figure 2.4.1, the loss during fine-tuning 
slowly decreased over the 20 epochs before early stopping 
triggered. However, the validation mAP after just 5 epochs 
(0.6734) was higher than the validation mAP values after 10, 
15, and 20 epochs (0.6684, 0.6486, and 0.6506 respectively). 
With the model fine-tuned for 5 epochs, the mAP for the 
Stanford Cars test set was 0.6749. 
 
Moving on to inference with COCO, our SSD model’s 
performance was extremely poor. Even at a very low 
confidence threshold of 0.05, the model was unable to produce 
any true positives across almost 10,000 images. 
 

 
Figure 2.4.2: An example of false positives produced by 
SSD (detecting cars where there are none) 

 

 
Figure 2.4.3: An example of false positives produced by 
SSD (correctly identifying a car, but the predicted bounding 
boxes are under the IoU threshold in relation to the ground 
truth box) 

 

 
Figure 2.4.4: An example of false negatives produced by 
SSD (not detecting ground truth cars) 

 
Figure 2.4.2 displays an example of the type of false positives 
that the SSD model commonly struggles with. The model 
frequently detects cars where there are none. Meanwhile, 
Figure 2.4.3 displays a different kind of false positive that the 
model has issues with. Even though the model appears to 
recognize certain components of a car here, the predicted 
bounding boxes are well under the IoU threshold of 0.5 in 
relation to the ground truth bounding box. Figure 2.4.4 shows 
an example of several false negatives (i.e. not detecting 
ground truth cars). The model appears to struggle with 
recognizing cars from certain angles such as the backside, as 
well as recognizing cars that are further away. 

IV. DISCUSSION 
 
In the following discussion, we summarize the key findings 
from our evaluation of the four object detection models and 
reflect on the implications of their performance. We also 
address the limitations encountered during the project, 
including dataset constraints, class imbalances, and resource 
limitations that may have impacted the results. 
 
A. Summary 
 
We tested four solutions to detect cars in images: YOLO, Fast 
RCNN, Mask RCNN, and SSD. The key dimensions of our 
solutions are speed and accuracy. In other words, our central 
research question was how quickly and accurately can we detect 
cars in images? 
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Fast RCNN was trained with validation from scratch using the 
first 5000 images from the COCO training set and first 625 
images from the COCO validation set. The model was tested 
using the second 625 images from the COCO validation set. 
Training took 6 hours over 10 epochs and was performed with 
a Google Colab T4 GPU. Testing took 1 minute. The mAP from 
testing across all classes was 0.016. 
 
Mask RCNN was pretrained on COCO. It was fine-tuned with 
validation using the 9000 images from the COCO training set 
that contain car annotations. The first 5000 car images were 
used for training and the next 1000 car images were used for 
validation. The model was tested using the 5000 images from 
the COCO validation set. Fine tuning took 1 hour over 10 
epochs and was done with a Google Colab A100 GPU. Testing 
took 12 minutes. The mAP from testing for car detection was 
12.552. 
 
YOLO was pretrained on COCO. It was fine-tuned using the 
first 6000 images from the Stanford Cars training set and the 
first 600 images from the Stanford Cars validation set. The 
model was tested using the 5000 images from the COCO 
validation set. Fine tuning took 4 hours over 50 epochs and was 
done with a Google Colab T4 GPU. Testing took 2 minutes. 
The mAP from testing for car detection was 0.0215. 
 
SSD was pretrained on COCO. It was fine-tuned using the first 
4000 images from the Stanford Cars training set, and it was 
tested using roughly 10,000 images from COCO. Using a 
Google Colab L4 GPU, fine-tuning took 30 minutes over 20 
epochs and testing took 7 minutes. The model was unable to 
produce any true positives. 
 
As we expected before our experiment, these results show that 
YOLO and SSD have faster inference than both Fast and Mask 
RCNN. We expected this because YOLO and SSD are one-
stage models and both RCNN models are two-stage. This 
supports the idea that one-stage models should be used in cases 
where autonomous vehicles must react to their environment. 
 
Additional factors that make YOLO faster than Fast and Mask 
RCNN, as well as SSD, is its architecture. YOLO v8 that we 
used for our experiment uses a CSPNet53 backbone and the 
RCNN models use ResNet50. CSPNet53 is designed to be 
faster than ResNet50 [9, 11]. It splits features maps so that some 
go through residual layers with heavy computation and others 
go through lighter computation. ResNet is a standard 
benchmark in CNN architectures that CSPNet53 was designed 
to be faster than. 
 
Unexpectedly YOLO also has higher mAP than the Fast RCNN 
model. We believe Fast RCNN has a lower mAP because it has 
limited training data and epochs. However, considering that 
Fast RCNN’s mAP is close to YOLO’s, we believe that Fast 
RCNN’s mAP would be higher with more training and testing 
resources. Mask RCNN outperformed YOLO in our evaluation. 
However, its mAP remains relatively low, likely due to 
suboptimal training. We believe that with a more diverse 
training dataset and additional fine-tuning epochs, Mask RCNN 
could achieve significantly better results. As a two-stage 

detector, it has the potential for higher accuracy when properly 
trained. With more experimentation in the training routine, we 
also believe that SSD could achieve much better results and 
offer a middle ground between the RCNN models and YOLO 
in terms of speed and accuracy. 
 
B. Limitations 
 

a. Model Testing 
 
Our model backbones were trained on COCO which is 
commonly used for object detectors with popular libraries like 
PyTorch, Detectron2, and Ultralytics. We also use the COCO 
validation set to test our models. This is a limitation of our 
experiments because the COCO validation set is indirectly used 
to train our models. 
 
Since we test our models on the COCO validation set, we 
introduce bias into our experiments. To maintain internal 
validity for our experiments, we should test on an entirely 
unseen dataset. Pascal VOC datasets are real-life images similar 
to COCO and since they were not used during training, they 
would be better datasets to test our object detection models. 
 

b. YOLO 
 
Ultralytics trains YOLO models on COCO and all its 80 classes. 
This dataset has a wide range of scenes, scales, and hues from 
real-life. Our YOLO model was fine-tuned on the Stanford Cars 
dataset that has well-centered high-quality images of cars. 
Unfortunately, Stanford Cars and COCO do not have similar 
enough images for fine tuning YOLO to be generally effective 
during predictions. 
 
Fine tuning on Stanford Cars overfits our model so that it best 
detects cars when they are well-centered and high-quality in 
images. However, it also makes false positive predictions of 
other objects like food when they have these features too. See 
Figure 3.1.1 where a well-centered high-quality image of food 
with rounded edges of the plate and colorful body is 
misclassified as a car. Also see Figure 3.1.2, one of few images 
from the COCO validation set that has a well-centered high-
quality car. 
 

 
Figure 3.1.1: YOLO misclassifies well-centered high-
quality image of food like Stanford Cars images are 
formatted 
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Figure 3.1.2: YOLO model that was fine tuned on Stanford 
Cars classifies a well-centered high-quality image of a car 
from the COCO validation set with 1.0 confidence 

 
It is possible that fine tuning on the Stanford Cars dataset could 
perform better predictions on the COCO validation set if 
techniques like random scaling, jitter, and hue augmentation 
were used during fine tuning. Furthermore, if we know we are 
doing object detection of cars in the COCO validation set, then 
maybe using Pascal VOC would be better for fine tuning since 
its images are similar to COCO. The COCO dataset is messy, 
has occlusion, and low-resolution images of cars. The Stanford 
Cars dataset was not similar enough out of the box to detect cars 
in real-life images. 
 

c. Fast RCNN 
 
Like Vanilla RCNN, very few libraries still support the Fast 
RCNN architecture. In addition, both models are known for 
their slower training and processing speeds. Since gradient 
clipping was not employed as a hyperparameter in the other 
models, it was difficult to directly observe the advantage of Fast 
R-CNN’s generally higher accuracy within the same number of 
training epochs. 
 
Additionally, gradient clipping was approached heuristically in 
our experiment. It may be feasible to evaluate the model’s 
training performance across a wide range of gradient clipping 
values over an extended number of epochs. A gradient clipping 
value of 0.01 is generally recommended when training over 
larger numbers of epochs to maintain training stability. A two-
way ANOVA can be conducted by varying the choice of 
optimizer. 
 

d. Mask RCNN 
 
Due to the nature of Mask RCNN’s architecture and outputs, 
any data used for either training or validation requires masking 
input. While the goal for all the models was to be fine-tuned on 
car specific data that was different than the data used for initial 
training, most datasets did not include masking or required a lot 
of preprocessing. While the other models fine-tuned on 
Standford Cars, the lack of mask data and limited time forced 
us to use a subset of COCO. The subset was created by only 
including samples that had cars as ground truths. It is 
understood that this is not good practice, to be using the same 
dataset for multiple levels of training, as well as used for testing.  
 

Due to the complex architecture of Mask RCNN and the added 
cost of instance segmentation, it required a significant amount 
of GPU memory and training time. As a result, we had to make 
compromises in terms of batch size, training iterations, and 
augmentation strategies to ensure the model could be trained 
within our available hardware and time constraints. These 
adjustments may have limited its full potential performance in 
our experiments. 
 

e. SSD 
 
Compared to YOLO (another one-stage architecture), SSD is 
generally expected to trade some speed in exchange for higher 
accuracy. The model did provide a middle ground between the 
RCNN models and YOLO in terms of speed, but it was unable 
to produce any true positives. This is likely attributable to the 
training routine we utilized. SSD may have required more 
extensive fine-tuning on the Stanford Cars dataset and a less 
restrictive early-stopping mechanism. The SSD architecture 
also could have struggled with the shift from the Stanford Cars 
dataset (centered and high-quality car images) to the more 
diverse COCO dataset. 
 
Additionally, our SSD model would possibly have benefited 
from an architecture different from that described in the original 
paper. For instance, the NVIDIA SSD300 model replaces the 
VGG16 backbone with a ResNet-50 one due to the VGG16 
backbone being “obsolete” [13]. 
 
C. Future Work 
 
In this project, we primarily used the COCO dataset for both 
training and evaluation. While COCO provides a rich and 
diverse set of object categories and annotations, using the same 
dataset for both stages limits our ability to assess the model's 
generalization capabilities on truly unseen data. 
 
Moving forward, we aim to evaluate our model on external 
benchmark datasets such as Google Open Images, Pascal VOC, 
and Cityscapes. These datasets offer a variety of scenes, object 
distributions, and annotation styles that would allow us to better 
understand the robustness and transferability of our model. 
Unfortunately, due to time constraints, we were unable to 
integrate and evaluate against these datasets in the current 
iteration. 
 
Expanding to other datasets will help identify potential 
overfitting to COCO-specific features, assess performance on 
rare or unseen classes, and guide improvements in training 
strategies to enhance generalization in real-world scenarios. 
 
Furthermore, YOLO is well supported through Ultralytics that 
makes training models easy. Mask RCNN is also well 
supported through libraries like Detectron2 and PyTorch. 
However, Vanilla and Fast RCNN are deprecated because 
Faster RCNN is now faster and more accurate. To get results 
with better accuracy with RCNN models, we should limit future 
experiments to current RCNN architectures. 
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D. Conclusion 
 
We have trained, tested, and compared one-stage and two-stage 
object detection models for the purpose of autonomous vehicle 
research. Using YOLO, Fast RCNN, Mask RCNN, and SSD we 
hypothesized that one-stage models would be faster and have 
lower accuracy, and vice versa for two-stage object detectors. 
Our results showed that YOLO performed best in terms of 
speed, and Mask RCNN performed best in terms of accuracy. 
However, we provided reasons why our experiment still 
supports two-stage object detection over single-stage for our 
case study and the improvements for all models.  
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